117440
If the function are defined as \(f(x)=\sqrt{x}\) and \(g(x)=\sqrt{1-x}\), then what is the common domain of the following functions?
\(\mathbf{f}+\mathbf{g}, \mathbf{f}-\mathbf{g}, \mathbf{f} / \mathbf{g}, \mathbf{g} / \mathbf{f}, \mathbf{g}-\mathbf{f}\), where \((\mathbf{f} \pm \mathbf{g})(\mathbf{x})=\mathbf{f}(\mathbf{x}) \pm\) \(\mathbf{g}(\mathbf{x}),(\mathbf{f} / \mathbf{g})(\mathbf{x})=\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}\)
117440
If the function are defined as \(f(x)=\sqrt{x}\) and \(g(x)=\sqrt{1-x}\), then what is the common domain of the following functions?
\(\mathbf{f}+\mathbf{g}, \mathbf{f}-\mathbf{g}, \mathbf{f} / \mathbf{g}, \mathbf{g} / \mathbf{f}, \mathbf{g}-\mathbf{f}\), where \((\mathbf{f} \pm \mathbf{g})(\mathbf{x})=\mathbf{f}(\mathbf{x}) \pm\) \(\mathbf{g}(\mathbf{x}),(\mathbf{f} / \mathbf{g})(\mathbf{x})=\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}\)
117440
If the function are defined as \(f(x)=\sqrt{x}\) and \(g(x)=\sqrt{1-x}\), then what is the common domain of the following functions?
\(\mathbf{f}+\mathbf{g}, \mathbf{f}-\mathbf{g}, \mathbf{f} / \mathbf{g}, \mathbf{g} / \mathbf{f}, \mathbf{g}-\mathbf{f}\), where \((\mathbf{f} \pm \mathbf{g})(\mathbf{x})=\mathbf{f}(\mathbf{x}) \pm\) \(\mathbf{g}(\mathbf{x}),(\mathbf{f} / \mathbf{g})(\mathbf{x})=\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}\)
117440
If the function are defined as \(f(x)=\sqrt{x}\) and \(g(x)=\sqrt{1-x}\), then what is the common domain of the following functions?
\(\mathbf{f}+\mathbf{g}, \mathbf{f}-\mathbf{g}, \mathbf{f} / \mathbf{g}, \mathbf{g} / \mathbf{f}, \mathbf{g}-\mathbf{f}\), where \((\mathbf{f} \pm \mathbf{g})(\mathbf{x})=\mathbf{f}(\mathbf{x}) \pm\) \(\mathbf{g}(\mathbf{x}),(\mathbf{f} / \mathbf{g})(\mathbf{x})=\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}\)