Domain, Co-domain and Range of Function
Sets, Relation and Function

117434 Let \(f: R \rightarrow R\) be defined by \(f(x)=\frac{x}{1+x^2}, x \in R\). Then the range of \(f\) is

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \((-1,1)-\{0\}\)
3 \(\mathrm{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \(\mathrm{R}-[-1,1]\)
Sets, Relation and Function

117435 Let \(\mathrm{f}:(1,3) \rightarrow \mathrm{R}\) be a function defined by \(\mathrm{f}(\mathrm{x})=\) \(\frac{x[x]}{1+x^2}\), where \([x]\) denotes the greatest integer \(\leq\) \(x\). Then the range of \(f\) is

1 \(\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)\)
2 \(\left(\frac{2}{5}, \frac{4}{5}\right]\)
3 \(\left(\frac{3}{5}, \frac{4}{5}\right)\)
4 \(\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]\)
Sets, Relation and Function

117436 If \([x]\) be the greatest integer less than or equal to \(x\), then \(\sum_{n=8}^{100}\left[\frac{(-1)^n n}{2}\right]\) is equal to

1 0
2 4
3 -2
4 2
Sets, Relation and Function

117437 If the domain of the function
\(f(x)=\frac{\cos ^{-1} \sqrt{x^2-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}\) is the interval \((\alpha, \beta)\), then \(\alpha+\beta\) is equal to

1 \(\frac{3}{2}\)
2 2
3 \(\frac{1}{2}\)
4 1
Sets, Relation and Function

117434 Let \(f: R \rightarrow R\) be defined by \(f(x)=\frac{x}{1+x^2}, x \in R\). Then the range of \(f\) is

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \((-1,1)-\{0\}\)
3 \(\mathrm{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \(\mathrm{R}-[-1,1]\)
Sets, Relation and Function

117435 Let \(\mathrm{f}:(1,3) \rightarrow \mathrm{R}\) be a function defined by \(\mathrm{f}(\mathrm{x})=\) \(\frac{x[x]}{1+x^2}\), where \([x]\) denotes the greatest integer \(\leq\) \(x\). Then the range of \(f\) is

1 \(\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)\)
2 \(\left(\frac{2}{5}, \frac{4}{5}\right]\)
3 \(\left(\frac{3}{5}, \frac{4}{5}\right)\)
4 \(\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]\)
Sets, Relation and Function

117436 If \([x]\) be the greatest integer less than or equal to \(x\), then \(\sum_{n=8}^{100}\left[\frac{(-1)^n n}{2}\right]\) is equal to

1 0
2 4
3 -2
4 2
Sets, Relation and Function

117437 If the domain of the function
\(f(x)=\frac{\cos ^{-1} \sqrt{x^2-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}\) is the interval \((\alpha, \beta)\), then \(\alpha+\beta\) is equal to

1 \(\frac{3}{2}\)
2 2
3 \(\frac{1}{2}\)
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117434 Let \(f: R \rightarrow R\) be defined by \(f(x)=\frac{x}{1+x^2}, x \in R\). Then the range of \(f\) is

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \((-1,1)-\{0\}\)
3 \(\mathrm{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \(\mathrm{R}-[-1,1]\)
Sets, Relation and Function

117435 Let \(\mathrm{f}:(1,3) \rightarrow \mathrm{R}\) be a function defined by \(\mathrm{f}(\mathrm{x})=\) \(\frac{x[x]}{1+x^2}\), where \([x]\) denotes the greatest integer \(\leq\) \(x\). Then the range of \(f\) is

1 \(\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)\)
2 \(\left(\frac{2}{5}, \frac{4}{5}\right]\)
3 \(\left(\frac{3}{5}, \frac{4}{5}\right)\)
4 \(\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]\)
Sets, Relation and Function

117436 If \([x]\) be the greatest integer less than or equal to \(x\), then \(\sum_{n=8}^{100}\left[\frac{(-1)^n n}{2}\right]\) is equal to

1 0
2 4
3 -2
4 2
Sets, Relation and Function

117437 If the domain of the function
\(f(x)=\frac{\cos ^{-1} \sqrt{x^2-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}\) is the interval \((\alpha, \beta)\), then \(\alpha+\beta\) is equal to

1 \(\frac{3}{2}\)
2 2
3 \(\frac{1}{2}\)
4 1
Sets, Relation and Function

117434 Let \(f: R \rightarrow R\) be defined by \(f(x)=\frac{x}{1+x^2}, x \in R\). Then the range of \(f\) is

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \((-1,1)-\{0\}\)
3 \(\mathrm{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \(\mathrm{R}-[-1,1]\)
Sets, Relation and Function

117435 Let \(\mathrm{f}:(1,3) \rightarrow \mathrm{R}\) be a function defined by \(\mathrm{f}(\mathrm{x})=\) \(\frac{x[x]}{1+x^2}\), where \([x]\) denotes the greatest integer \(\leq\) \(x\). Then the range of \(f\) is

1 \(\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)\)
2 \(\left(\frac{2}{5}, \frac{4}{5}\right]\)
3 \(\left(\frac{3}{5}, \frac{4}{5}\right)\)
4 \(\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]\)
Sets, Relation and Function

117436 If \([x]\) be the greatest integer less than or equal to \(x\), then \(\sum_{n=8}^{100}\left[\frac{(-1)^n n}{2}\right]\) is equal to

1 0
2 4
3 -2
4 2
Sets, Relation and Function

117437 If the domain of the function
\(f(x)=\frac{\cos ^{-1} \sqrt{x^2-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}\) is the interval \((\alpha, \beta)\), then \(\alpha+\beta\) is equal to

1 \(\frac{3}{2}\)
2 2
3 \(\frac{1}{2}\)
4 1