117406
Let \(A=\{-4,-2,-1,0,3,5\}, f: A \rightarrow I R \quad\) be defined by
\(f(x)=\left\{\begin{array}{ccc}\mathbf{3 x}-1 & \text { for } & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2+1 & \text { for } & -\mathbf{3} \leq \mathbf{x} \leq \mathbf{3} \\ \mathbf{2 x}-\mathbf{3} & \text { for } & \mathbf{x}\lt -\mathbf{3}\end{array}\right.\)
Then the range of \(f\) is
117406
Let \(A=\{-4,-2,-1,0,3,5\}, f: A \rightarrow I R \quad\) be defined by
\(f(x)=\left\{\begin{array}{ccc}\mathbf{3 x}-1 & \text { for } & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2+1 & \text { for } & -\mathbf{3} \leq \mathbf{x} \leq \mathbf{3} \\ \mathbf{2 x}-\mathbf{3} & \text { for } & \mathbf{x}\lt -\mathbf{3}\end{array}\right.\)
Then the range of \(f\) is
117406
Let \(A=\{-4,-2,-1,0,3,5\}, f: A \rightarrow I R \quad\) be defined by
\(f(x)=\left\{\begin{array}{ccc}\mathbf{3 x}-1 & \text { for } & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2+1 & \text { for } & -\mathbf{3} \leq \mathbf{x} \leq \mathbf{3} \\ \mathbf{2 x}-\mathbf{3} & \text { for } & \mathbf{x}\lt -\mathbf{3}\end{array}\right.\)
Then the range of \(f\) is
117406
Let \(A=\{-4,-2,-1,0,3,5\}, f: A \rightarrow I R \quad\) be defined by
\(f(x)=\left\{\begin{array}{ccc}\mathbf{3 x}-1 & \text { for } & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2+1 & \text { for } & -\mathbf{3} \leq \mathbf{x} \leq \mathbf{3} \\ \mathbf{2 x}-\mathbf{3} & \text { for } & \mathbf{x}\lt -\mathbf{3}\end{array}\right.\)
Then the range of \(f\) is