Domain, Co-domain and Range of Function
Sets, Relation and Function

117400 The domain of definition of the function \(f(x)=\frac{1}{\sqrt{|[|x|-1]|-5}}\) is

1 \((-\infty,-7] \cup[7, \infty)\)
2 \((-\infty, \infty)\)
3 \((7, \infty)\)
4 \((-7, \infty)\)
Sets, Relation and Function

117401 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0,3]\)
2 \([0, \sqrt{3}]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117402 The domain of the function \(f(x)=\frac{1}{\sqrt{|x|-x}}\) is

1 \((-\infty, 0)\)
2 \((-\infty, \infty)-\{0\}\)
3 \((0, \infty)\)
4 \((-\infty, 1)-\{0\}\)
Sets, Relation and Function

117403 The domain of the function \(f(x)=\) \(\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
Sets, Relation and Function

117400 The domain of definition of the function \(f(x)=\frac{1}{\sqrt{|[|x|-1]|-5}}\) is

1 \((-\infty,-7] \cup[7, \infty)\)
2 \((-\infty, \infty)\)
3 \((7, \infty)\)
4 \((-7, \infty)\)
Sets, Relation and Function

117401 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0,3]\)
2 \([0, \sqrt{3}]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117402 The domain of the function \(f(x)=\frac{1}{\sqrt{|x|-x}}\) is

1 \((-\infty, 0)\)
2 \((-\infty, \infty)-\{0\}\)
3 \((0, \infty)\)
4 \((-\infty, 1)-\{0\}\)
Sets, Relation and Function

117403 The domain of the function \(f(x)=\) \(\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117400 The domain of definition of the function \(f(x)=\frac{1}{\sqrt{|[|x|-1]|-5}}\) is

1 \((-\infty,-7] \cup[7, \infty)\)
2 \((-\infty, \infty)\)
3 \((7, \infty)\)
4 \((-7, \infty)\)
Sets, Relation and Function

117401 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0,3]\)
2 \([0, \sqrt{3}]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117402 The domain of the function \(f(x)=\frac{1}{\sqrt{|x|-x}}\) is

1 \((-\infty, 0)\)
2 \((-\infty, \infty)-\{0\}\)
3 \((0, \infty)\)
4 \((-\infty, 1)-\{0\}\)
Sets, Relation and Function

117403 The domain of the function \(f(x)=\) \(\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
Sets, Relation and Function

117400 The domain of definition of the function \(f(x)=\frac{1}{\sqrt{|[|x|-1]|-5}}\) is

1 \((-\infty,-7] \cup[7, \infty)\)
2 \((-\infty, \infty)\)
3 \((7, \infty)\)
4 \((-7, \infty)\)
Sets, Relation and Function

117401 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0,3]\)
2 \([0, \sqrt{3}]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117402 The domain of the function \(f(x)=\frac{1}{\sqrt{|x|-x}}\) is

1 \((-\infty, 0)\)
2 \((-\infty, \infty)-\{0\}\)
3 \((0, \infty)\)
4 \((-\infty, 1)-\{0\}\)
Sets, Relation and Function

117403 The domain of the function \(f(x)=\) \(\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)