Domain, Co-domain and Range of Function
Sets, Relation and Function

117333 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0, \sqrt{3}]\)
2 \((0, \sqrt{3})\)
3 \([0, \sqrt{3})\)
4 \((0, \sqrt{3}]\)
Sets, Relation and Function

117336 Consider the following relations in the real number
\(\mathbf{R}_1=\left\{(x, y) \mid x^2+y^2 \leq 25\right\}, \mathbf{R}_2=\left\{(x, y) \left\lvert\, y \geq \frac{4 x^2}{9}\right.\right\}\)
, then the range of \(R_1 \cap R_2\) is

1 \([0,5]\)
2 \([-3,3]\)
3 \([-5,5]\)
4 \([-3,5]\)
Sets, Relation and Function

117337 The domain of the real valued function \(f(x)=\frac{\log _2(x+3)}{\sqrt{x^2+3 x+2}}\) is

1 \((-3, \infty)\)
2 \((-3,1) \cup(1-, \infty)\)
3 \((-3,-2) \cup(-2,-1) \cup(-1, \infty)\)
4 \((-3,-2) \cup(-1, \infty)\)
Sets, Relation and Function

117338 The domain of the real valued function \(f(x)=\frac{\sqrt{2-x}+\sqrt{1+x}}{\sqrt{x+3}}\) is

1 \([-1,2]\)
2 \((-1,2)\)
3 \([-1, \infty)\)
4 \([2, \infty)\)
Sets, Relation and Function

117333 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0, \sqrt{3}]\)
2 \((0, \sqrt{3})\)
3 \([0, \sqrt{3})\)
4 \((0, \sqrt{3}]\)
Sets, Relation and Function

117336 Consider the following relations in the real number
\(\mathbf{R}_1=\left\{(x, y) \mid x^2+y^2 \leq 25\right\}, \mathbf{R}_2=\left\{(x, y) \left\lvert\, y \geq \frac{4 x^2}{9}\right.\right\}\)
, then the range of \(R_1 \cap R_2\) is

1 \([0,5]\)
2 \([-3,3]\)
3 \([-5,5]\)
4 \([-3,5]\)
Sets, Relation and Function

117337 The domain of the real valued function \(f(x)=\frac{\log _2(x+3)}{\sqrt{x^2+3 x+2}}\) is

1 \((-3, \infty)\)
2 \((-3,1) \cup(1-, \infty)\)
3 \((-3,-2) \cup(-2,-1) \cup(-1, \infty)\)
4 \((-3,-2) \cup(-1, \infty)\)
Sets, Relation and Function

117338 The domain of the real valued function \(f(x)=\frac{\sqrt{2-x}+\sqrt{1+x}}{\sqrt{x+3}}\) is

1 \([-1,2]\)
2 \((-1,2)\)
3 \([-1, \infty)\)
4 \([2, \infty)\)
Sets, Relation and Function

117333 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0, \sqrt{3}]\)
2 \((0, \sqrt{3})\)
3 \([0, \sqrt{3})\)
4 \((0, \sqrt{3}]\)
Sets, Relation and Function

117336 Consider the following relations in the real number
\(\mathbf{R}_1=\left\{(x, y) \mid x^2+y^2 \leq 25\right\}, \mathbf{R}_2=\left\{(x, y) \left\lvert\, y \geq \frac{4 x^2}{9}\right.\right\}\)
, then the range of \(R_1 \cap R_2\) is

1 \([0,5]\)
2 \([-3,3]\)
3 \([-5,5]\)
4 \([-3,5]\)
Sets, Relation and Function

117337 The domain of the real valued function \(f(x)=\frac{\log _2(x+3)}{\sqrt{x^2+3 x+2}}\) is

1 \((-3, \infty)\)
2 \((-3,1) \cup(1-, \infty)\)
3 \((-3,-2) \cup(-2,-1) \cup(-1, \infty)\)
4 \((-3,-2) \cup(-1, \infty)\)
Sets, Relation and Function

117338 The domain of the real valued function \(f(x)=\frac{\sqrt{2-x}+\sqrt{1+x}}{\sqrt{x+3}}\) is

1 \([-1,2]\)
2 \((-1,2)\)
3 \([-1, \infty)\)
4 \([2, \infty)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117333 The range of the function
\(f(x)=\tan \sqrt{\frac{\pi^2}{9}-x^2}\) is

1 \([0, \sqrt{3}]\)
2 \((0, \sqrt{3})\)
3 \([0, \sqrt{3})\)
4 \((0, \sqrt{3}]\)
Sets, Relation and Function

117336 Consider the following relations in the real number
\(\mathbf{R}_1=\left\{(x, y) \mid x^2+y^2 \leq 25\right\}, \mathbf{R}_2=\left\{(x, y) \left\lvert\, y \geq \frac{4 x^2}{9}\right.\right\}\)
, then the range of \(R_1 \cap R_2\) is

1 \([0,5]\)
2 \([-3,3]\)
3 \([-5,5]\)
4 \([-3,5]\)
Sets, Relation and Function

117337 The domain of the real valued function \(f(x)=\frac{\log _2(x+3)}{\sqrt{x^2+3 x+2}}\) is

1 \((-3, \infty)\)
2 \((-3,1) \cup(1-, \infty)\)
3 \((-3,-2) \cup(-2,-1) \cup(-1, \infty)\)
4 \((-3,-2) \cup(-1, \infty)\)
Sets, Relation and Function

117338 The domain of the real valued function \(f(x)=\frac{\sqrt{2-x}+\sqrt{1+x}}{\sqrt{x+3}}\) is

1 \([-1,2]\)
2 \((-1,2)\)
3 \([-1, \infty)\)
4 \([2, \infty)\)