Domain, Co-domain and Range of Function
Sets, Relation and Function

117315 If \(x>0\), then solution of \(\left|x+\frac{1}{x}\right|\lt 4\) is

1 \(-2-\sqrt{3}\lt x\lt -2+\sqrt{3}\)
2 \(2-\sqrt{3}\lt x\lt 7+\sqrt{3}\)
3 \(2-\sqrt{3}\lt \mathrm{x}\lt 2+\sqrt{3}\)
4 None of the above
Sets, Relation and Function

117316 The range of \(\alpha\), for which the point \((\alpha, \alpha)\) lies inside the region bounded by the curves \(y=\sqrt{1-x^2}\) and \(x+y=1\) is

1 \(\frac{1}{2}\lt \alpha\lt \frac{1}{\sqrt{2}}\)
2 \(\frac{1}{2}\lt \alpha\lt \frac{1}{3}\)
3 \(\frac{1}{3}\lt \alpha\lt \frac{1}{\sqrt{3}}\)
4 \(\frac{1}{4}\lt \alpha\lt \frac{1}{2}\)
Sets, Relation and Function

117317 The domain of the function \(f(x)=\sqrt{3-x}+\cos ^{-1}\left(\frac{3-2 x}{5}\right)\), is

1 \([-1,3]\)
2 \((-1,3]\)
3 \([-1,3)\)
4 None of these
Sets, Relation and Function

117318 Domain of \(f(x)=y=\sqrt{\log _3\{\cos (\sin x)\}}\) is

1 \(\left\{\frac{\mathrm{n} \pi}{2}: \mathrm{n} \in I\right\}\)
2 \(\{2 \mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
3 \(\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
4 None of these
Sets, Relation and Function

117319 Range of the function \(f(x)=\frac{x}{1+x^2}\) is

1 \((-\infty, \infty)\)
2 \([-1,1]\)
3 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \([-\sqrt{2}, \sqrt{2}]\)
Sets, Relation and Function

117315 If \(x>0\), then solution of \(\left|x+\frac{1}{x}\right|\lt 4\) is

1 \(-2-\sqrt{3}\lt x\lt -2+\sqrt{3}\)
2 \(2-\sqrt{3}\lt x\lt 7+\sqrt{3}\)
3 \(2-\sqrt{3}\lt \mathrm{x}\lt 2+\sqrt{3}\)
4 None of the above
Sets, Relation and Function

117316 The range of \(\alpha\), for which the point \((\alpha, \alpha)\) lies inside the region bounded by the curves \(y=\sqrt{1-x^2}\) and \(x+y=1\) is

1 \(\frac{1}{2}\lt \alpha\lt \frac{1}{\sqrt{2}}\)
2 \(\frac{1}{2}\lt \alpha\lt \frac{1}{3}\)
3 \(\frac{1}{3}\lt \alpha\lt \frac{1}{\sqrt{3}}\)
4 \(\frac{1}{4}\lt \alpha\lt \frac{1}{2}\)
Sets, Relation and Function

117317 The domain of the function \(f(x)=\sqrt{3-x}+\cos ^{-1}\left(\frac{3-2 x}{5}\right)\), is

1 \([-1,3]\)
2 \((-1,3]\)
3 \([-1,3)\)
4 None of these
Sets, Relation and Function

117318 Domain of \(f(x)=y=\sqrt{\log _3\{\cos (\sin x)\}}\) is

1 \(\left\{\frac{\mathrm{n} \pi}{2}: \mathrm{n} \in I\right\}\)
2 \(\{2 \mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
3 \(\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
4 None of these
Sets, Relation and Function

117319 Range of the function \(f(x)=\frac{x}{1+x^2}\) is

1 \((-\infty, \infty)\)
2 \([-1,1]\)
3 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \([-\sqrt{2}, \sqrt{2}]\)
Sets, Relation and Function

117315 If \(x>0\), then solution of \(\left|x+\frac{1}{x}\right|\lt 4\) is

1 \(-2-\sqrt{3}\lt x\lt -2+\sqrt{3}\)
2 \(2-\sqrt{3}\lt x\lt 7+\sqrt{3}\)
3 \(2-\sqrt{3}\lt \mathrm{x}\lt 2+\sqrt{3}\)
4 None of the above
Sets, Relation and Function

117316 The range of \(\alpha\), for which the point \((\alpha, \alpha)\) lies inside the region bounded by the curves \(y=\sqrt{1-x^2}\) and \(x+y=1\) is

1 \(\frac{1}{2}\lt \alpha\lt \frac{1}{\sqrt{2}}\)
2 \(\frac{1}{2}\lt \alpha\lt \frac{1}{3}\)
3 \(\frac{1}{3}\lt \alpha\lt \frac{1}{\sqrt{3}}\)
4 \(\frac{1}{4}\lt \alpha\lt \frac{1}{2}\)
Sets, Relation and Function

117317 The domain of the function \(f(x)=\sqrt{3-x}+\cos ^{-1}\left(\frac{3-2 x}{5}\right)\), is

1 \([-1,3]\)
2 \((-1,3]\)
3 \([-1,3)\)
4 None of these
Sets, Relation and Function

117318 Domain of \(f(x)=y=\sqrt{\log _3\{\cos (\sin x)\}}\) is

1 \(\left\{\frac{\mathrm{n} \pi}{2}: \mathrm{n} \in I\right\}\)
2 \(\{2 \mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
3 \(\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
4 None of these
Sets, Relation and Function

117319 Range of the function \(f(x)=\frac{x}{1+x^2}\) is

1 \((-\infty, \infty)\)
2 \([-1,1]\)
3 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \([-\sqrt{2}, \sqrt{2}]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117315 If \(x>0\), then solution of \(\left|x+\frac{1}{x}\right|\lt 4\) is

1 \(-2-\sqrt{3}\lt x\lt -2+\sqrt{3}\)
2 \(2-\sqrt{3}\lt x\lt 7+\sqrt{3}\)
3 \(2-\sqrt{3}\lt \mathrm{x}\lt 2+\sqrt{3}\)
4 None of the above
Sets, Relation and Function

117316 The range of \(\alpha\), for which the point \((\alpha, \alpha)\) lies inside the region bounded by the curves \(y=\sqrt{1-x^2}\) and \(x+y=1\) is

1 \(\frac{1}{2}\lt \alpha\lt \frac{1}{\sqrt{2}}\)
2 \(\frac{1}{2}\lt \alpha\lt \frac{1}{3}\)
3 \(\frac{1}{3}\lt \alpha\lt \frac{1}{\sqrt{3}}\)
4 \(\frac{1}{4}\lt \alpha\lt \frac{1}{2}\)
Sets, Relation and Function

117317 The domain of the function \(f(x)=\sqrt{3-x}+\cos ^{-1}\left(\frac{3-2 x}{5}\right)\), is

1 \([-1,3]\)
2 \((-1,3]\)
3 \([-1,3)\)
4 None of these
Sets, Relation and Function

117318 Domain of \(f(x)=y=\sqrt{\log _3\{\cos (\sin x)\}}\) is

1 \(\left\{\frac{\mathrm{n} \pi}{2}: \mathrm{n} \in I\right\}\)
2 \(\{2 \mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
3 \(\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
4 None of these
Sets, Relation and Function

117319 Range of the function \(f(x)=\frac{x}{1+x^2}\) is

1 \((-\infty, \infty)\)
2 \([-1,1]\)
3 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \([-\sqrt{2}, \sqrt{2}]\)
Sets, Relation and Function

117315 If \(x>0\), then solution of \(\left|x+\frac{1}{x}\right|\lt 4\) is

1 \(-2-\sqrt{3}\lt x\lt -2+\sqrt{3}\)
2 \(2-\sqrt{3}\lt x\lt 7+\sqrt{3}\)
3 \(2-\sqrt{3}\lt \mathrm{x}\lt 2+\sqrt{3}\)
4 None of the above
Sets, Relation and Function

117316 The range of \(\alpha\), for which the point \((\alpha, \alpha)\) lies inside the region bounded by the curves \(y=\sqrt{1-x^2}\) and \(x+y=1\) is

1 \(\frac{1}{2}\lt \alpha\lt \frac{1}{\sqrt{2}}\)
2 \(\frac{1}{2}\lt \alpha\lt \frac{1}{3}\)
3 \(\frac{1}{3}\lt \alpha\lt \frac{1}{\sqrt{3}}\)
4 \(\frac{1}{4}\lt \alpha\lt \frac{1}{2}\)
Sets, Relation and Function

117317 The domain of the function \(f(x)=\sqrt{3-x}+\cos ^{-1}\left(\frac{3-2 x}{5}\right)\), is

1 \([-1,3]\)
2 \((-1,3]\)
3 \([-1,3)\)
4 None of these
Sets, Relation and Function

117318 Domain of \(f(x)=y=\sqrt{\log _3\{\cos (\sin x)\}}\) is

1 \(\left\{\frac{\mathrm{n} \pi}{2}: \mathrm{n} \in I\right\}\)
2 \(\{2 \mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
3 \(\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}\)
4 None of these
Sets, Relation and Function

117319 Range of the function \(f(x)=\frac{x}{1+x^2}\) is

1 \((-\infty, \infty)\)
2 \([-1,1]\)
3 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
4 \([-\sqrt{2}, \sqrt{2}]\)