Composition Function
Sets, Relation and Function

117247 If \(g(x)=x^2+x-2\) and \(\frac{1}{2}(\operatorname{gof} f)(x)=2 x^2-5 x+2\) then one such function \(f(x)=\)

1 \(2 x-3\)
2 \(2 x+3\)
3 \(2+2 x\)
4 \(2 x^2-3 x-1\)
Sets, Relation and Function

117252 Let \(\mathbf{f}: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{\mathrm{x}-2}{2 \mathrm{x}+1}\). If \(\alpha, \beta\) satisfy the equation \(f(f(x))=-x\), then \(4\left(\alpha^2+\beta^2\right)\)

1 17
2 12
3 24
4 34
Sets, Relation and Function

117253 If \(f(x)=\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)\) and \(g\left(\frac{5}{4}\right)=1\), then \(\operatorname{gof}(x)\) is equal to

1 0
2 2
3 1
4 3
Sets, Relation and Function

117255 If \(f(x)=\frac{x}{\sqrt{1+x^2}}\), then \(f \circ f \circ f(x)\) is equal to

1 \(\frac{x}{\sqrt{1+3 x^2}}\)
2 \(\frac{x}{\sqrt{1+x^2}}\)
3 \(\frac{x}{\sqrt{1+2 x^2}}\)
4 None of these
Sets, Relation and Function

117247 If \(g(x)=x^2+x-2\) and \(\frac{1}{2}(\operatorname{gof} f)(x)=2 x^2-5 x+2\) then one such function \(f(x)=\)

1 \(2 x-3\)
2 \(2 x+3\)
3 \(2+2 x\)
4 \(2 x^2-3 x-1\)
Sets, Relation and Function

117252 Let \(\mathbf{f}: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{\mathrm{x}-2}{2 \mathrm{x}+1}\). If \(\alpha, \beta\) satisfy the equation \(f(f(x))=-x\), then \(4\left(\alpha^2+\beta^2\right)\)

1 17
2 12
3 24
4 34
Sets, Relation and Function

117253 If \(f(x)=\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)\) and \(g\left(\frac{5}{4}\right)=1\), then \(\operatorname{gof}(x)\) is equal to

1 0
2 2
3 1
4 3
Sets, Relation and Function

117255 If \(f(x)=\frac{x}{\sqrt{1+x^2}}\), then \(f \circ f \circ f(x)\) is equal to

1 \(\frac{x}{\sqrt{1+3 x^2}}\)
2 \(\frac{x}{\sqrt{1+x^2}}\)
3 \(\frac{x}{\sqrt{1+2 x^2}}\)
4 None of these
Sets, Relation and Function

117247 If \(g(x)=x^2+x-2\) and \(\frac{1}{2}(\operatorname{gof} f)(x)=2 x^2-5 x+2\) then one such function \(f(x)=\)

1 \(2 x-3\)
2 \(2 x+3\)
3 \(2+2 x\)
4 \(2 x^2-3 x-1\)
Sets, Relation and Function

117252 Let \(\mathbf{f}: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{\mathrm{x}-2}{2 \mathrm{x}+1}\). If \(\alpha, \beta\) satisfy the equation \(f(f(x))=-x\), then \(4\left(\alpha^2+\beta^2\right)\)

1 17
2 12
3 24
4 34
Sets, Relation and Function

117253 If \(f(x)=\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)\) and \(g\left(\frac{5}{4}\right)=1\), then \(\operatorname{gof}(x)\) is equal to

1 0
2 2
3 1
4 3
Sets, Relation and Function

117255 If \(f(x)=\frac{x}{\sqrt{1+x^2}}\), then \(f \circ f \circ f(x)\) is equal to

1 \(\frac{x}{\sqrt{1+3 x^2}}\)
2 \(\frac{x}{\sqrt{1+x^2}}\)
3 \(\frac{x}{\sqrt{1+2 x^2}}\)
4 None of these
Sets, Relation and Function

117247 If \(g(x)=x^2+x-2\) and \(\frac{1}{2}(\operatorname{gof} f)(x)=2 x^2-5 x+2\) then one such function \(f(x)=\)

1 \(2 x-3\)
2 \(2 x+3\)
3 \(2+2 x\)
4 \(2 x^2-3 x-1\)
Sets, Relation and Function

117252 Let \(\mathbf{f}: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{\mathrm{x}-2}{2 \mathrm{x}+1}\). If \(\alpha, \beta\) satisfy the equation \(f(f(x))=-x\), then \(4\left(\alpha^2+\beta^2\right)\)

1 17
2 12
3 24
4 34
Sets, Relation and Function

117253 If \(f(x)=\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)\) and \(g\left(\frac{5}{4}\right)=1\), then \(\operatorname{gof}(x)\) is equal to

1 0
2 2
3 1
4 3
Sets, Relation and Function

117255 If \(f(x)=\frac{x}{\sqrt{1+x^2}}\), then \(f \circ f \circ f(x)\) is equal to

1 \(\frac{x}{\sqrt{1+3 x^2}}\)
2 \(\frac{x}{\sqrt{1+x^2}}\)
3 \(\frac{x}{\sqrt{1+2 x^2}}\)
4 None of these