Composition Function
Sets, Relation and Function

117243 Let \(f\) be a non-zero real valued continuous function satisfying \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y\) \(\in\). If \(f(2)=9\), then \(f(6)\) is equal to

1 \(3^2\)
2 \(3^6\)
3 \(3^4\)
4 \(3^3\)
Sets, Relation and Function

117244 If \(f: R \rightarrow R, g: R \rightarrow R\) are defined by \(f(x)\) \(=5 x-3, g(x)=x^2+3\), then go \(f^{-1}(3)\) is equal to

1 \(\frac{25}{3}\)
2 \(\frac{111}{25}\)
3 \(\frac{9}{25}\)
4 \(\frac{25}{111}\)
Sets, Relation and Function

117245 Let \(R\) be the set of real numbers and the mapping \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)=5-x^2\) and \(g(x)=3 x-4\), then the value of (fog)(-1) is

1 -44
2 -54
3 -32
4 -64
Sets, Relation and Function

117246 Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)\) \(=2 x+1 \& g(x)=x^2-2\) determine (gof) \((x)=\)

1 \(2 x^2-3\)
2 \(4 x^2+4 x-1\)
3 \(4 x^2+4 x+1\)
4 \(2 x^2-4\)
Sets, Relation and Function

117243 Let \(f\) be a non-zero real valued continuous function satisfying \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y\) \(\in\). If \(f(2)=9\), then \(f(6)\) is equal to

1 \(3^2\)
2 \(3^6\)
3 \(3^4\)
4 \(3^3\)
Sets, Relation and Function

117244 If \(f: R \rightarrow R, g: R \rightarrow R\) are defined by \(f(x)\) \(=5 x-3, g(x)=x^2+3\), then go \(f^{-1}(3)\) is equal to

1 \(\frac{25}{3}\)
2 \(\frac{111}{25}\)
3 \(\frac{9}{25}\)
4 \(\frac{25}{111}\)
Sets, Relation and Function

117245 Let \(R\) be the set of real numbers and the mapping \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)=5-x^2\) and \(g(x)=3 x-4\), then the value of (fog)(-1) is

1 -44
2 -54
3 -32
4 -64
Sets, Relation and Function

117246 Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)\) \(=2 x+1 \& g(x)=x^2-2\) determine (gof) \((x)=\)

1 \(2 x^2-3\)
2 \(4 x^2+4 x-1\)
3 \(4 x^2+4 x+1\)
4 \(2 x^2-4\)
Sets, Relation and Function

117243 Let \(f\) be a non-zero real valued continuous function satisfying \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y\) \(\in\). If \(f(2)=9\), then \(f(6)\) is equal to

1 \(3^2\)
2 \(3^6\)
3 \(3^4\)
4 \(3^3\)
Sets, Relation and Function

117244 If \(f: R \rightarrow R, g: R \rightarrow R\) are defined by \(f(x)\) \(=5 x-3, g(x)=x^2+3\), then go \(f^{-1}(3)\) is equal to

1 \(\frac{25}{3}\)
2 \(\frac{111}{25}\)
3 \(\frac{9}{25}\)
4 \(\frac{25}{111}\)
Sets, Relation and Function

117245 Let \(R\) be the set of real numbers and the mapping \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)=5-x^2\) and \(g(x)=3 x-4\), then the value of (fog)(-1) is

1 -44
2 -54
3 -32
4 -64
Sets, Relation and Function

117246 Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)\) \(=2 x+1 \& g(x)=x^2-2\) determine (gof) \((x)=\)

1 \(2 x^2-3\)
2 \(4 x^2+4 x-1\)
3 \(4 x^2+4 x+1\)
4 \(2 x^2-4\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117243 Let \(f\) be a non-zero real valued continuous function satisfying \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y\) \(\in\). If \(f(2)=9\), then \(f(6)\) is equal to

1 \(3^2\)
2 \(3^6\)
3 \(3^4\)
4 \(3^3\)
Sets, Relation and Function

117244 If \(f: R \rightarrow R, g: R \rightarrow R\) are defined by \(f(x)\) \(=5 x-3, g(x)=x^2+3\), then go \(f^{-1}(3)\) is equal to

1 \(\frac{25}{3}\)
2 \(\frac{111}{25}\)
3 \(\frac{9}{25}\)
4 \(\frac{25}{111}\)
Sets, Relation and Function

117245 Let \(R\) be the set of real numbers and the mapping \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)=5-x^2\) and \(g(x)=3 x-4\), then the value of (fog)(-1) is

1 -44
2 -54
3 -32
4 -64
Sets, Relation and Function

117246 Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be defined by \(f(x)\) \(=2 x+1 \& g(x)=x^2-2\) determine (gof) \((x)=\)

1 \(2 x^2-3\)
2 \(4 x^2+4 x-1\)
3 \(4 x^2+4 x+1\)
4 \(2 x^2-4\)