117238 If f(x)=3x+6,g(x)=4x+k and fog (x)= gof(x) then k=
D Given,f(x)=3x+6,g(x)=4x+kf∘g(x)=f(g(x))=f(4x+k)=3(4x+k)+6=12x+3k+6g∘f(x)=g(f(x))=g(3x+6)=4(3x+6)+k=12x+24+k∵fog(x)=gof(x)12x+3k+6=12x+24+k2k=18k=9
117239 If f:R→R is defined by f(x)=2x+3, then f−1 (x)
B Given, f:R→R is defined byf(x)=2x+3So, letf(x)=yy=2x+32x=y−3x=y−32Hence,f−1(x)=x−32
117240 f:R→R,f(x)=3x+2g:R→R,g(x)=6x+5for the given functions (g−1)(10)=
A Given,f:R→R,f(x)=3x+2 g:R→R,g(x)=6x+5and find (g∘f−1)(10)= ?Let f(x)=yy=3x+23x=y−2⇒x=y−23f−1(x)=x−23Then, (g∘f−1)(10)=g{f−1(10)}{∵x=10}=g{10−23}=g{83}Now,g{83}=6×83+5=2×8+5=16+5(gof−1)(10)=21.
117241 If f(x)=2x−33x+4, then f−1(−43)=
D Given,f(x)=2x−33x+4Let, f(x)=y=2x−33x+4On cross multiplication, we get3xy+4y=2x−33xy−2x=−3−4yx(3y−2)=−3−4yx=f−1(y)=−3−4y3y−2Put, y=−43, we get -f−1(−43)=−3−4×(−43)3(−43)−2=−3+163−4−2=73×(−6)=−718
117242 f:R→R and g:R→R are two function such that f(x)=x2 and g(x)=1x2, then x4(f∘g)(x) is equal to
B Given that,f(x)=x2g(x)=1x2Then,(f∘g)x=f(g(x))f(g(x))=(1x2)2=1x4x4(f∘g)(x)=x4×1x4=1