Composition Function
Sets, Relation and Function

117238 If \(f(x)=3 x+6, g(x)=4 x+k\) and fog \((x)=\) gof
(x) then \(\mathrm{k}=\)

1 -9
2 18
3 \(\frac{1}{9}\)
4 9
Sets, Relation and Function

117239 If \(f: R \rightarrow R\) is defined by \(f(x)=2 x+3\), then \(f^{-1}\) (x)

1 does not exist because ' \(\mathrm{f}\) ' is not surjective
2 is given by \(\frac{x-3}{2}\)
3 is given by \(\frac{1}{2 x+3}\)
4 does not exist because ' \(\mathrm{f}\) ' is not injective
Sets, Relation and Function

117240 \(f: R \rightarrow R, f(x)=3 x+2\)
\(g: R \rightarrow R, g(x)=6 x+5\)
for the given functions \(\left(g^{-1}\right)(10)=\)

1 21
2 29
3 7
4 \(\frac{8}{3}\)
Sets, Relation and Function

117241 If \(f(x)=\frac{2 x-3}{3 x+4}\), then \(f^{-1}\left(\frac{-4}{3}\right)=\)

1 zero
2 \(\frac{3}{4}\)
3 \(-\frac{2}{3}\)
4 None of these
Sets, Relation and Function

117242 \(\quad \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) and \(\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}\) are two function such that \(f(x)=x^2\) and \(g(x)=\frac{1}{x^2}\), then \(x^4(f \circ g)(x)\) is equal to

1 0
2 1
3 \(\mathrm{x}^4\)
4 \(x^2\)
Sets, Relation and Function

117238 If \(f(x)=3 x+6, g(x)=4 x+k\) and fog \((x)=\) gof
(x) then \(\mathrm{k}=\)

1 -9
2 18
3 \(\frac{1}{9}\)
4 9
Sets, Relation and Function

117239 If \(f: R \rightarrow R\) is defined by \(f(x)=2 x+3\), then \(f^{-1}\) (x)

1 does not exist because ' \(\mathrm{f}\) ' is not surjective
2 is given by \(\frac{x-3}{2}\)
3 is given by \(\frac{1}{2 x+3}\)
4 does not exist because ' \(\mathrm{f}\) ' is not injective
Sets, Relation and Function

117240 \(f: R \rightarrow R, f(x)=3 x+2\)
\(g: R \rightarrow R, g(x)=6 x+5\)
for the given functions \(\left(g^{-1}\right)(10)=\)

1 21
2 29
3 7
4 \(\frac{8}{3}\)
Sets, Relation and Function

117241 If \(f(x)=\frac{2 x-3}{3 x+4}\), then \(f^{-1}\left(\frac{-4}{3}\right)=\)

1 zero
2 \(\frac{3}{4}\)
3 \(-\frac{2}{3}\)
4 None of these
Sets, Relation and Function

117242 \(\quad \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) and \(\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}\) are two function such that \(f(x)=x^2\) and \(g(x)=\frac{1}{x^2}\), then \(x^4(f \circ g)(x)\) is equal to

1 0
2 1
3 \(\mathrm{x}^4\)
4 \(x^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117238 If \(f(x)=3 x+6, g(x)=4 x+k\) and fog \((x)=\) gof
(x) then \(\mathrm{k}=\)

1 -9
2 18
3 \(\frac{1}{9}\)
4 9
Sets, Relation and Function

117239 If \(f: R \rightarrow R\) is defined by \(f(x)=2 x+3\), then \(f^{-1}\) (x)

1 does not exist because ' \(\mathrm{f}\) ' is not surjective
2 is given by \(\frac{x-3}{2}\)
3 is given by \(\frac{1}{2 x+3}\)
4 does not exist because ' \(\mathrm{f}\) ' is not injective
Sets, Relation and Function

117240 \(f: R \rightarrow R, f(x)=3 x+2\)
\(g: R \rightarrow R, g(x)=6 x+5\)
for the given functions \(\left(g^{-1}\right)(10)=\)

1 21
2 29
3 7
4 \(\frac{8}{3}\)
Sets, Relation and Function

117241 If \(f(x)=\frac{2 x-3}{3 x+4}\), then \(f^{-1}\left(\frac{-4}{3}\right)=\)

1 zero
2 \(\frac{3}{4}\)
3 \(-\frac{2}{3}\)
4 None of these
Sets, Relation and Function

117242 \(\quad \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) and \(\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}\) are two function such that \(f(x)=x^2\) and \(g(x)=\frac{1}{x^2}\), then \(x^4(f \circ g)(x)\) is equal to

1 0
2 1
3 \(\mathrm{x}^4\)
4 \(x^2\)
Sets, Relation and Function

117238 If \(f(x)=3 x+6, g(x)=4 x+k\) and fog \((x)=\) gof
(x) then \(\mathrm{k}=\)

1 -9
2 18
3 \(\frac{1}{9}\)
4 9
Sets, Relation and Function

117239 If \(f: R \rightarrow R\) is defined by \(f(x)=2 x+3\), then \(f^{-1}\) (x)

1 does not exist because ' \(\mathrm{f}\) ' is not surjective
2 is given by \(\frac{x-3}{2}\)
3 is given by \(\frac{1}{2 x+3}\)
4 does not exist because ' \(\mathrm{f}\) ' is not injective
Sets, Relation and Function

117240 \(f: R \rightarrow R, f(x)=3 x+2\)
\(g: R \rightarrow R, g(x)=6 x+5\)
for the given functions \(\left(g^{-1}\right)(10)=\)

1 21
2 29
3 7
4 \(\frac{8}{3}\)
Sets, Relation and Function

117241 If \(f(x)=\frac{2 x-3}{3 x+4}\), then \(f^{-1}\left(\frac{-4}{3}\right)=\)

1 zero
2 \(\frac{3}{4}\)
3 \(-\frac{2}{3}\)
4 None of these
Sets, Relation and Function

117242 \(\quad \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) and \(\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}\) are two function such that \(f(x)=x^2\) and \(g(x)=\frac{1}{x^2}\), then \(x^4(f \circ g)(x)\) is equal to

1 0
2 1
3 \(\mathrm{x}^4\)
4 \(x^2\)
Sets, Relation and Function

117238 If \(f(x)=3 x+6, g(x)=4 x+k\) and fog \((x)=\) gof
(x) then \(\mathrm{k}=\)

1 -9
2 18
3 \(\frac{1}{9}\)
4 9
Sets, Relation and Function

117239 If \(f: R \rightarrow R\) is defined by \(f(x)=2 x+3\), then \(f^{-1}\) (x)

1 does not exist because ' \(\mathrm{f}\) ' is not surjective
2 is given by \(\frac{x-3}{2}\)
3 is given by \(\frac{1}{2 x+3}\)
4 does not exist because ' \(\mathrm{f}\) ' is not injective
Sets, Relation and Function

117240 \(f: R \rightarrow R, f(x)=3 x+2\)
\(g: R \rightarrow R, g(x)=6 x+5\)
for the given functions \(\left(g^{-1}\right)(10)=\)

1 21
2 29
3 7
4 \(\frac{8}{3}\)
Sets, Relation and Function

117241 If \(f(x)=\frac{2 x-3}{3 x+4}\), then \(f^{-1}\left(\frac{-4}{3}\right)=\)

1 zero
2 \(\frac{3}{4}\)
3 \(-\frac{2}{3}\)
4 None of these
Sets, Relation and Function

117242 \(\quad \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) and \(\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}\) are two function such that \(f(x)=x^2\) and \(g(x)=\frac{1}{x^2}\), then \(x^4(f \circ g)(x)\) is equal to

1 0
2 1
3 \(\mathrm{x}^4\)
4 \(x^2\)