Inverse of Function and Binary Operation
Sets, Relation and Function

117172 The inverse of the function \(y=\frac{2^x}{1+2^x}\) is

1 \(x=\log _2 \frac{1}{1-2^y}\)
2 \(x=\log _2\left(1-\frac{1}{y}\right)\)
3 \(x=\log _2\left(\frac{1}{1-y}\right)\)
4 \(x=\log _2\left(\frac{y}{1-y}\right)\)
Sets, Relation and Function

117173 If \(g: R \rightarrow R\) is a mapping such that \(g(x)=9 x\) \(+4, \forall x \in R\), then \(g^{-1}\) (7) is

1 3
2 \(1 / 3\)
3 -3
4 \(-1 / 3\)
Sets, Relation and Function

117174 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions given by \(f(x)=2 x-3, g(x)=x^3+5\). Then, \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{\frac{1}{3}}\)
2 \(\left(x-\frac{7}{2}\right)^{\frac{1}{3}}\)
3 \(\left(\frac{x-2}{7}\right)^{\frac{1}{3}}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{\frac{1}{3}}\)
Sets, Relation and Function

117176 On the set of positive rationales, a binary operation * is defined by \(a * b=\frac{2 a b}{5}\). If \(2 * x=\) \(3^{-1}\), then \(\mathrm{x}=\)

1 \(\frac{1}{6}\)
2 \(\frac{2}{5}\)
3 \(\frac{5}{12}\)
4 \(\frac{125}{48}\)
Sets, Relation and Function

117172 The inverse of the function \(y=\frac{2^x}{1+2^x}\) is

1 \(x=\log _2 \frac{1}{1-2^y}\)
2 \(x=\log _2\left(1-\frac{1}{y}\right)\)
3 \(x=\log _2\left(\frac{1}{1-y}\right)\)
4 \(x=\log _2\left(\frac{y}{1-y}\right)\)
Sets, Relation and Function

117173 If \(g: R \rightarrow R\) is a mapping such that \(g(x)=9 x\) \(+4, \forall x \in R\), then \(g^{-1}\) (7) is

1 3
2 \(1 / 3\)
3 -3
4 \(-1 / 3\)
Sets, Relation and Function

117174 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions given by \(f(x)=2 x-3, g(x)=x^3+5\). Then, \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{\frac{1}{3}}\)
2 \(\left(x-\frac{7}{2}\right)^{\frac{1}{3}}\)
3 \(\left(\frac{x-2}{7}\right)^{\frac{1}{3}}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{\frac{1}{3}}\)
Sets, Relation and Function

117176 On the set of positive rationales, a binary operation * is defined by \(a * b=\frac{2 a b}{5}\). If \(2 * x=\) \(3^{-1}\), then \(\mathrm{x}=\)

1 \(\frac{1}{6}\)
2 \(\frac{2}{5}\)
3 \(\frac{5}{12}\)
4 \(\frac{125}{48}\)
Sets, Relation and Function

117172 The inverse of the function \(y=\frac{2^x}{1+2^x}\) is

1 \(x=\log _2 \frac{1}{1-2^y}\)
2 \(x=\log _2\left(1-\frac{1}{y}\right)\)
3 \(x=\log _2\left(\frac{1}{1-y}\right)\)
4 \(x=\log _2\left(\frac{y}{1-y}\right)\)
Sets, Relation and Function

117173 If \(g: R \rightarrow R\) is a mapping such that \(g(x)=9 x\) \(+4, \forall x \in R\), then \(g^{-1}\) (7) is

1 3
2 \(1 / 3\)
3 -3
4 \(-1 / 3\)
Sets, Relation and Function

117174 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions given by \(f(x)=2 x-3, g(x)=x^3+5\). Then, \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{\frac{1}{3}}\)
2 \(\left(x-\frac{7}{2}\right)^{\frac{1}{3}}\)
3 \(\left(\frac{x-2}{7}\right)^{\frac{1}{3}}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{\frac{1}{3}}\)
Sets, Relation and Function

117176 On the set of positive rationales, a binary operation * is defined by \(a * b=\frac{2 a b}{5}\). If \(2 * x=\) \(3^{-1}\), then \(\mathrm{x}=\)

1 \(\frac{1}{6}\)
2 \(\frac{2}{5}\)
3 \(\frac{5}{12}\)
4 \(\frac{125}{48}\)
Sets, Relation and Function

117172 The inverse of the function \(y=\frac{2^x}{1+2^x}\) is

1 \(x=\log _2 \frac{1}{1-2^y}\)
2 \(x=\log _2\left(1-\frac{1}{y}\right)\)
3 \(x=\log _2\left(\frac{1}{1-y}\right)\)
4 \(x=\log _2\left(\frac{y}{1-y}\right)\)
Sets, Relation and Function

117173 If \(g: R \rightarrow R\) is a mapping such that \(g(x)=9 x\) \(+4, \forall x \in R\), then \(g^{-1}\) (7) is

1 3
2 \(1 / 3\)
3 -3
4 \(-1 / 3\)
Sets, Relation and Function

117174 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions given by \(f(x)=2 x-3, g(x)=x^3+5\). Then, \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{\frac{1}{3}}\)
2 \(\left(x-\frac{7}{2}\right)^{\frac{1}{3}}\)
3 \(\left(\frac{x-2}{7}\right)^{\frac{1}{3}}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{\frac{1}{3}}\)
Sets, Relation and Function

117176 On the set of positive rationales, a binary operation * is defined by \(a * b=\frac{2 a b}{5}\). If \(2 * x=\) \(3^{-1}\), then \(\mathrm{x}=\)

1 \(\frac{1}{6}\)
2 \(\frac{2}{5}\)
3 \(\frac{5}{12}\)
4 \(\frac{125}{48}\)