Sets, Relation and Function
117164
Let \(\boldsymbol{f}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}\) be a function such that \(\mathrm{f}(1\), 1) \(=2\) and \(f((\mathrm{~m}+1, \mathrm{n}))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n})\) and \(f((\mathrm{~m}, \mathrm{n}+1))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n}-1), \forall\) \(\mathrm{m}, \mathrm{n} \in \mathrm{N}\), then find