Inverse of Function and Binary Operation
Sets, Relation and Function

117164 Let \(\boldsymbol{f}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}\) be a function such that \(\mathrm{f}(1\), 1) \(=2\) and \(f((\mathrm{~m}+1, \mathrm{n}))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n})\) and \(f((\mathrm{~m}, \mathrm{n}+1))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n}-1), \forall\) \(\mathrm{m}, \mathrm{n} \in \mathrm{N}\), then find \(\boldsymbol{f ( 2 , 2 )}\)

1 8
2 7
3 9
4 10
Sets, Relation and Function

117165 In the set \(\mathrm{Q}^{+}\)of all positive rational numbers, the operation * is defined by the formula \(a * b=\frac{a b}{6}\). Then, the inverse of 9 with respect to * is

1 4
2 3
3 \(\frac{1}{9}\)
4 \(\frac{1}{3}\)
Sets, Relation and Function

117166 Which of the following functions is inverse itself?

1 \(f(\mathrm{t})=\frac{(1-\mathrm{t})}{(1+\mathrm{t})}\)
2 \(f(\mathrm{t})=\frac{\left(1-\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)}\)
3 \(f(\mathrm{t})=4^{\log \mathrm{t}}\)
4 \(f(\mathrm{t})=2^{\mathrm{t}}\)
Sets, Relation and Function

117168 Let \(A=\{1,2,3,4\}\) and \(R\) be the relation on \(A\) defined by \(\{(a, b): a, b \in A, a \times b\) is an even number \(\}\), then find the range of \(R\).

1 \(\{1,2,3,4\}\)
2 \(\{2,4\}\)
3 \(\{2,3,4\}\)
4 \(\{1,2,4\}\)
Sets, Relation and Function

117164 Let \(\boldsymbol{f}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}\) be a function such that \(\mathrm{f}(1\), 1) \(=2\) and \(f((\mathrm{~m}+1, \mathrm{n}))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n})\) and \(f((\mathrm{~m}, \mathrm{n}+1))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n}-1), \forall\) \(\mathrm{m}, \mathrm{n} \in \mathrm{N}\), then find \(\boldsymbol{f ( 2 , 2 )}\)

1 8
2 7
3 9
4 10
Sets, Relation and Function

117165 In the set \(\mathrm{Q}^{+}\)of all positive rational numbers, the operation * is defined by the formula \(a * b=\frac{a b}{6}\). Then, the inverse of 9 with respect to * is

1 4
2 3
3 \(\frac{1}{9}\)
4 \(\frac{1}{3}\)
Sets, Relation and Function

117166 Which of the following functions is inverse itself?

1 \(f(\mathrm{t})=\frac{(1-\mathrm{t})}{(1+\mathrm{t})}\)
2 \(f(\mathrm{t})=\frac{\left(1-\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)}\)
3 \(f(\mathrm{t})=4^{\log \mathrm{t}}\)
4 \(f(\mathrm{t})=2^{\mathrm{t}}\)
Sets, Relation and Function

117168 Let \(A=\{1,2,3,4\}\) and \(R\) be the relation on \(A\) defined by \(\{(a, b): a, b \in A, a \times b\) is an even number \(\}\), then find the range of \(R\).

1 \(\{1,2,3,4\}\)
2 \(\{2,4\}\)
3 \(\{2,3,4\}\)
4 \(\{1,2,4\}\)
Sets, Relation and Function

117164 Let \(\boldsymbol{f}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}\) be a function such that \(\mathrm{f}(1\), 1) \(=2\) and \(f((\mathrm{~m}+1, \mathrm{n}))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n})\) and \(f((\mathrm{~m}, \mathrm{n}+1))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n}-1), \forall\) \(\mathrm{m}, \mathrm{n} \in \mathrm{N}\), then find \(\boldsymbol{f ( 2 , 2 )}\)

1 8
2 7
3 9
4 10
Sets, Relation and Function

117165 In the set \(\mathrm{Q}^{+}\)of all positive rational numbers, the operation * is defined by the formula \(a * b=\frac{a b}{6}\). Then, the inverse of 9 with respect to * is

1 4
2 3
3 \(\frac{1}{9}\)
4 \(\frac{1}{3}\)
Sets, Relation and Function

117166 Which of the following functions is inverse itself?

1 \(f(\mathrm{t})=\frac{(1-\mathrm{t})}{(1+\mathrm{t})}\)
2 \(f(\mathrm{t})=\frac{\left(1-\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)}\)
3 \(f(\mathrm{t})=4^{\log \mathrm{t}}\)
4 \(f(\mathrm{t})=2^{\mathrm{t}}\)
Sets, Relation and Function

117168 Let \(A=\{1,2,3,4\}\) and \(R\) be the relation on \(A\) defined by \(\{(a, b): a, b \in A, a \times b\) is an even number \(\}\), then find the range of \(R\).

1 \(\{1,2,3,4\}\)
2 \(\{2,4\}\)
3 \(\{2,3,4\}\)
4 \(\{1,2,4\}\)
Sets, Relation and Function

117164 Let \(\boldsymbol{f}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}\) be a function such that \(\mathrm{f}(1\), 1) \(=2\) and \(f((\mathrm{~m}+1, \mathrm{n}))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n})\) and \(f((\mathrm{~m}, \mathrm{n}+1))=f((\mathrm{~m}, \mathrm{n}))+2(\mathrm{~m}+\mathrm{n}-1), \forall\) \(\mathrm{m}, \mathrm{n} \in \mathrm{N}\), then find \(\boldsymbol{f ( 2 , 2 )}\)

1 8
2 7
3 9
4 10
Sets, Relation and Function

117165 In the set \(\mathrm{Q}^{+}\)of all positive rational numbers, the operation * is defined by the formula \(a * b=\frac{a b}{6}\). Then, the inverse of 9 with respect to * is

1 4
2 3
3 \(\frac{1}{9}\)
4 \(\frac{1}{3}\)
Sets, Relation and Function

117166 Which of the following functions is inverse itself?

1 \(f(\mathrm{t})=\frac{(1-\mathrm{t})}{(1+\mathrm{t})}\)
2 \(f(\mathrm{t})=\frac{\left(1-\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)}\)
3 \(f(\mathrm{t})=4^{\log \mathrm{t}}\)
4 \(f(\mathrm{t})=2^{\mathrm{t}}\)
Sets, Relation and Function

117168 Let \(A=\{1,2,3,4\}\) and \(R\) be the relation on \(A\) defined by \(\{(a, b): a, b \in A, a \times b\) is an even number \(\}\), then find the range of \(R\).

1 \(\{1,2,3,4\}\)
2 \(\{2,4\}\)
3 \(\{2,3,4\}\)
4 \(\{1,2,4\}\)