Inverse of Function and Binary Operation
Sets, Relation and Function

117158 Let \(f: R \rightarrow R\) be the function defined by \(f(x)=\sqrt{\mathbf{x}-3}, \forall \mathbf{x} \in \mathbf{R}\) then, \(\boldsymbol{f}^{-1}(\mathbf{x})=\)

1 \(x+3\)
2 \(x^2+3\)
3 \(\frac{x+3}{2}\)
4 \(\frac{x^2+3}{2}\)
Sets, Relation and Function

117159 Which one of the following binary operations * is associative on the set of real numbers?

1 \(a * b=a^b\)
2 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-1\)
3 \(\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{b} \neq 0\)
4 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}-\mathrm{b}\)
Sets, Relation and Function

117160 Let \(f: R-\left\{\frac{5}{4}\right\} \rightarrow R\) be a function defined as \(f(x)=\frac{5 x}{4 x+5}\). The inverse of \(f\) is the map \(g\) :
Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{\frac{5}{4}\right\}\) given by

1 \(g(y)=\frac{y}{5-4 y}\)
2 \(g(y)=\frac{5 y}{5+4 y}\)
3 \(g(y)=\frac{5 y}{5-4 y}\)
4 none of these
Sets, Relation and Function

117162 Let * be a binary operation on the set \(R\) of real numbers defined by \(a * b=\frac{3 a b}{7}\), then the identity element in \(\mathbf{R}\) for ' \(*\) ' is

1 \(\frac{3}{7}\)
2 \(\frac{3}{14}\)
3 \(\frac{2}{3}\)
4 none of these
Sets, Relation and Function

117163 If \(f(x)=(x+2)^2-2, x \geq-2\). Then \(f^{-1}(x)\) equals

1 \(-\sqrt{(2+x)}-2\)
2 \(\sqrt{(2+x)}+2\)
3 \(\sqrt{(2+x)}-2\)
4 \(-\sqrt{(2+x)}+2\)
Sets, Relation and Function

117158 Let \(f: R \rightarrow R\) be the function defined by \(f(x)=\sqrt{\mathbf{x}-3}, \forall \mathbf{x} \in \mathbf{R}\) then, \(\boldsymbol{f}^{-1}(\mathbf{x})=\)

1 \(x+3\)
2 \(x^2+3\)
3 \(\frac{x+3}{2}\)
4 \(\frac{x^2+3}{2}\)
Sets, Relation and Function

117159 Which one of the following binary operations * is associative on the set of real numbers?

1 \(a * b=a^b\)
2 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-1\)
3 \(\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{b} \neq 0\)
4 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}-\mathrm{b}\)
Sets, Relation and Function

117160 Let \(f: R-\left\{\frac{5}{4}\right\} \rightarrow R\) be a function defined as \(f(x)=\frac{5 x}{4 x+5}\). The inverse of \(f\) is the map \(g\) :
Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{\frac{5}{4}\right\}\) given by

1 \(g(y)=\frac{y}{5-4 y}\)
2 \(g(y)=\frac{5 y}{5+4 y}\)
3 \(g(y)=\frac{5 y}{5-4 y}\)
4 none of these
Sets, Relation and Function

117162 Let * be a binary operation on the set \(R\) of real numbers defined by \(a * b=\frac{3 a b}{7}\), then the identity element in \(\mathbf{R}\) for ' \(*\) ' is

1 \(\frac{3}{7}\)
2 \(\frac{3}{14}\)
3 \(\frac{2}{3}\)
4 none of these
Sets, Relation and Function

117163 If \(f(x)=(x+2)^2-2, x \geq-2\). Then \(f^{-1}(x)\) equals

1 \(-\sqrt{(2+x)}-2\)
2 \(\sqrt{(2+x)}+2\)
3 \(\sqrt{(2+x)}-2\)
4 \(-\sqrt{(2+x)}+2\)
Sets, Relation and Function

117158 Let \(f: R \rightarrow R\) be the function defined by \(f(x)=\sqrt{\mathbf{x}-3}, \forall \mathbf{x} \in \mathbf{R}\) then, \(\boldsymbol{f}^{-1}(\mathbf{x})=\)

1 \(x+3\)
2 \(x^2+3\)
3 \(\frac{x+3}{2}\)
4 \(\frac{x^2+3}{2}\)
Sets, Relation and Function

117159 Which one of the following binary operations * is associative on the set of real numbers?

1 \(a * b=a^b\)
2 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-1\)
3 \(\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{b} \neq 0\)
4 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}-\mathrm{b}\)
Sets, Relation and Function

117160 Let \(f: R-\left\{\frac{5}{4}\right\} \rightarrow R\) be a function defined as \(f(x)=\frac{5 x}{4 x+5}\). The inverse of \(f\) is the map \(g\) :
Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{\frac{5}{4}\right\}\) given by

1 \(g(y)=\frac{y}{5-4 y}\)
2 \(g(y)=\frac{5 y}{5+4 y}\)
3 \(g(y)=\frac{5 y}{5-4 y}\)
4 none of these
Sets, Relation and Function

117162 Let * be a binary operation on the set \(R\) of real numbers defined by \(a * b=\frac{3 a b}{7}\), then the identity element in \(\mathbf{R}\) for ' \(*\) ' is

1 \(\frac{3}{7}\)
2 \(\frac{3}{14}\)
3 \(\frac{2}{3}\)
4 none of these
Sets, Relation and Function

117163 If \(f(x)=(x+2)^2-2, x \geq-2\). Then \(f^{-1}(x)\) equals

1 \(-\sqrt{(2+x)}-2\)
2 \(\sqrt{(2+x)}+2\)
3 \(\sqrt{(2+x)}-2\)
4 \(-\sqrt{(2+x)}+2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117158 Let \(f: R \rightarrow R\) be the function defined by \(f(x)=\sqrt{\mathbf{x}-3}, \forall \mathbf{x} \in \mathbf{R}\) then, \(\boldsymbol{f}^{-1}(\mathbf{x})=\)

1 \(x+3\)
2 \(x^2+3\)
3 \(\frac{x+3}{2}\)
4 \(\frac{x^2+3}{2}\)
Sets, Relation and Function

117159 Which one of the following binary operations * is associative on the set of real numbers?

1 \(a * b=a^b\)
2 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-1\)
3 \(\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{b} \neq 0\)
4 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}-\mathrm{b}\)
Sets, Relation and Function

117160 Let \(f: R-\left\{\frac{5}{4}\right\} \rightarrow R\) be a function defined as \(f(x)=\frac{5 x}{4 x+5}\). The inverse of \(f\) is the map \(g\) :
Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{\frac{5}{4}\right\}\) given by

1 \(g(y)=\frac{y}{5-4 y}\)
2 \(g(y)=\frac{5 y}{5+4 y}\)
3 \(g(y)=\frac{5 y}{5-4 y}\)
4 none of these
Sets, Relation and Function

117162 Let * be a binary operation on the set \(R\) of real numbers defined by \(a * b=\frac{3 a b}{7}\), then the identity element in \(\mathbf{R}\) for ' \(*\) ' is

1 \(\frac{3}{7}\)
2 \(\frac{3}{14}\)
3 \(\frac{2}{3}\)
4 none of these
Sets, Relation and Function

117163 If \(f(x)=(x+2)^2-2, x \geq-2\). Then \(f^{-1}(x)\) equals

1 \(-\sqrt{(2+x)}-2\)
2 \(\sqrt{(2+x)}+2\)
3 \(\sqrt{(2+x)}-2\)
4 \(-\sqrt{(2+x)}+2\)
Sets, Relation and Function

117158 Let \(f: R \rightarrow R\) be the function defined by \(f(x)=\sqrt{\mathbf{x}-3}, \forall \mathbf{x} \in \mathbf{R}\) then, \(\boldsymbol{f}^{-1}(\mathbf{x})=\)

1 \(x+3\)
2 \(x^2+3\)
3 \(\frac{x+3}{2}\)
4 \(\frac{x^2+3}{2}\)
Sets, Relation and Function

117159 Which one of the following binary operations * is associative on the set of real numbers?

1 \(a * b=a^b\)
2 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-1\)
3 \(\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{b} \neq 0\)
4 \(\mathrm{a} * \mathrm{~b}=\mathrm{a}-\mathrm{b}\)
Sets, Relation and Function

117160 Let \(f: R-\left\{\frac{5}{4}\right\} \rightarrow R\) be a function defined as \(f(x)=\frac{5 x}{4 x+5}\). The inverse of \(f\) is the map \(g\) :
Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{\frac{5}{4}\right\}\) given by

1 \(g(y)=\frac{y}{5-4 y}\)
2 \(g(y)=\frac{5 y}{5+4 y}\)
3 \(g(y)=\frac{5 y}{5-4 y}\)
4 none of these
Sets, Relation and Function

117162 Let * be a binary operation on the set \(R\) of real numbers defined by \(a * b=\frac{3 a b}{7}\), then the identity element in \(\mathbf{R}\) for ' \(*\) ' is

1 \(\frac{3}{7}\)
2 \(\frac{3}{14}\)
3 \(\frac{2}{3}\)
4 none of these
Sets, Relation and Function

117163 If \(f(x)=(x+2)^2-2, x \geq-2\). Then \(f^{-1}(x)\) equals

1 \(-\sqrt{(2+x)}-2\)
2 \(\sqrt{(2+x)}+2\)
3 \(\sqrt{(2+x)}-2\)
4 \(-\sqrt{(2+x)}+2\)