117148 A binary operation o is defined on the set of integers I by poq =3p2+2q2−5pq If aol =1, then a is equal to
Exp: (D) : Given,And, poq =3p2+2q2−5pqThen,aol =1aol =3a2+2(1)2−5a(1)1=3a2+2−5a3a2−5a+1=0Fromx=−b±b2−4ac2aa=−(−5)±25−4×3×12×3a=5±136
117149 If f(x)=2x−1x+5(x≠−5), then f−1(x) is equal to:
Exp: (B) : Given,f(x)=2x−1x+5,(x≠−5)f−1(x)= ? Let,f(x)=yy=2x−1x+5xy+5y=2x−1xy−2x=−1−5yx(y−2)=−(1+5y)x(2−y)=(1+5y)x=1+5y2−ySo, f−1(x)=1+5x2−x,x≠2Also written as f−1(x)=5x+12−x,x≠2
117152 If f(x)=(4−(x−7)3), then f−1(x)=
Exp: (C): Given that,f(x)=(4−(x−7)3)y=(4−(x−7)3)(x−7)3=4−yx−7=(4−y)1/3x=7+(4−y)1/3f−1(x)=7+(4−x)1/3
117153 Let * be a binary operation on the set Q+of all +ve rational numbers defined by a∗b=ab100 for all a,b∈Q+. The inverse of 0.1 under operation * is
Exp: (A) : We have a∗ b=ab100Let e be the identify element.Then, e∗a=a∗e=a∀a∈Q+a=ea100⇒e=100Now, let inverse of 0.1 be x, then 0.1∗x=e⇒0.1x100=100x∈Q+x=1040.1=105