Inverse of Function and Binary Operation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117137 If \(f: R \rightarrow R\) is given by \(f(x)=x^3+3\), then \(f^{-1}(x)\) is equal to

1 \(x^{1 / 3}-3\)
2 \(\mathrm{x}^{1 / 3}+3\)
3 \((\mathrm{x}-3)\)
4 \((x-3)^{1 / 3}\)
Sets, Relation and Function

117138 \(R\) is a relation from \(\{11,12,13\}\) to \(\{8,10,12\}\) defined by \(y=x-3\). Then \(R^{-1}\) is

1 \(\{(8,11),(10,13)\}\)
2 \(\{11,18),(13,10)\}\)
3 \(\{10,13),(8,11)\}\)
4 None of the above
Sets, Relation and Function

117146 Inverse of function \(f(x)=\frac{10^x-10^{-x}}{10^x+10^{-x}}\) is

1 \(\log _{10}(2-x)\)
2 \(\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)\)
3 \(\frac{1}{2} \log _{10}(2 x-1)\)
4 \(\frac{1}{4} \log _{10}\left(\frac{2 x}{2-x}\right)\)
Sets, Relation and Function

117147 Let \(S\) be a finite set containing \(n\) elements. Then the total number of binary operations on \(S\) is

1 \(\mathrm{n}^{\mathrm{n}}\)
2 \(2^{\mathrm{n}^2}\)
3 \(\mathrm{n}^{\mathrm{n}^2}\)
4 \(\mathrm{n}^2\)
Sets, Relation and Function

117137 If \(f: R \rightarrow R\) is given by \(f(x)=x^3+3\), then \(f^{-1}(x)\) is equal to

1 \(x^{1 / 3}-3\)
2 \(\mathrm{x}^{1 / 3}+3\)
3 \((\mathrm{x}-3)\)
4 \((x-3)^{1 / 3}\)
Sets, Relation and Function

117138 \(R\) is a relation from \(\{11,12,13\}\) to \(\{8,10,12\}\) defined by \(y=x-3\). Then \(R^{-1}\) is

1 \(\{(8,11),(10,13)\}\)
2 \(\{11,18),(13,10)\}\)
3 \(\{10,13),(8,11)\}\)
4 None of the above
Sets, Relation and Function

117146 Inverse of function \(f(x)=\frac{10^x-10^{-x}}{10^x+10^{-x}}\) is

1 \(\log _{10}(2-x)\)
2 \(\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)\)
3 \(\frac{1}{2} \log _{10}(2 x-1)\)
4 \(\frac{1}{4} \log _{10}\left(\frac{2 x}{2-x}\right)\)
Sets, Relation and Function

117147 Let \(S\) be a finite set containing \(n\) elements. Then the total number of binary operations on \(S\) is

1 \(\mathrm{n}^{\mathrm{n}}\)
2 \(2^{\mathrm{n}^2}\)
3 \(\mathrm{n}^{\mathrm{n}^2}\)
4 \(\mathrm{n}^2\)
Sets, Relation and Function

117137 If \(f: R \rightarrow R\) is given by \(f(x)=x^3+3\), then \(f^{-1}(x)\) is equal to

1 \(x^{1 / 3}-3\)
2 \(\mathrm{x}^{1 / 3}+3\)
3 \((\mathrm{x}-3)\)
4 \((x-3)^{1 / 3}\)
Sets, Relation and Function

117138 \(R\) is a relation from \(\{11,12,13\}\) to \(\{8,10,12\}\) defined by \(y=x-3\). Then \(R^{-1}\) is

1 \(\{(8,11),(10,13)\}\)
2 \(\{11,18),(13,10)\}\)
3 \(\{10,13),(8,11)\}\)
4 None of the above
Sets, Relation and Function

117146 Inverse of function \(f(x)=\frac{10^x-10^{-x}}{10^x+10^{-x}}\) is

1 \(\log _{10}(2-x)\)
2 \(\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)\)
3 \(\frac{1}{2} \log _{10}(2 x-1)\)
4 \(\frac{1}{4} \log _{10}\left(\frac{2 x}{2-x}\right)\)
Sets, Relation and Function

117147 Let \(S\) be a finite set containing \(n\) elements. Then the total number of binary operations on \(S\) is

1 \(\mathrm{n}^{\mathrm{n}}\)
2 \(2^{\mathrm{n}^2}\)
3 \(\mathrm{n}^{\mathrm{n}^2}\)
4 \(\mathrm{n}^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117137 If \(f: R \rightarrow R\) is given by \(f(x)=x^3+3\), then \(f^{-1}(x)\) is equal to

1 \(x^{1 / 3}-3\)
2 \(\mathrm{x}^{1 / 3}+3\)
3 \((\mathrm{x}-3)\)
4 \((x-3)^{1 / 3}\)
Sets, Relation and Function

117138 \(R\) is a relation from \(\{11,12,13\}\) to \(\{8,10,12\}\) defined by \(y=x-3\). Then \(R^{-1}\) is

1 \(\{(8,11),(10,13)\}\)
2 \(\{11,18),(13,10)\}\)
3 \(\{10,13),(8,11)\}\)
4 None of the above
Sets, Relation and Function

117146 Inverse of function \(f(x)=\frac{10^x-10^{-x}}{10^x+10^{-x}}\) is

1 \(\log _{10}(2-x)\)
2 \(\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)\)
3 \(\frac{1}{2} \log _{10}(2 x-1)\)
4 \(\frac{1}{4} \log _{10}\left(\frac{2 x}{2-x}\right)\)
Sets, Relation and Function

117147 Let \(S\) be a finite set containing \(n\) elements. Then the total number of binary operations on \(S\) is

1 \(\mathrm{n}^{\mathrm{n}}\)
2 \(2^{\mathrm{n}^2}\)
3 \(\mathrm{n}^{\mathrm{n}^2}\)
4 \(\mathrm{n}^2\)