117098
Given that for any \(n \in N\) there exist an odd integer \(q\) and a non-negative integer \(r\) such that, \(n\) can be written uniquely as \(n=q \times 2^r\). Let \(\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}\) be function defined by
\(\mathbf{f}(\mathbf{n})=\left(\mathbf{r}+\mathbf{1}, \frac{\mathbf{q}+\mathbf{1}}{\mathbf{2}}\right)\). Then,
117098
Given that for any \(n \in N\) there exist an odd integer \(q\) and a non-negative integer \(r\) such that, \(n\) can be written uniquely as \(n=q \times 2^r\). Let \(\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}\) be function defined by
\(\mathbf{f}(\mathbf{n})=\left(\mathbf{r}+\mathbf{1}, \frac{\mathbf{q}+\mathbf{1}}{\mathbf{2}}\right)\). Then,
117098
Given that for any \(n \in N\) there exist an odd integer \(q\) and a non-negative integer \(r\) such that, \(n\) can be written uniquely as \(n=q \times 2^r\). Let \(\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}\) be function defined by
\(\mathbf{f}(\mathbf{n})=\left(\mathbf{r}+\mathbf{1}, \frac{\mathbf{q}+\mathbf{1}}{\mathbf{2}}\right)\). Then,
117098
Given that for any \(n \in N\) there exist an odd integer \(q\) and a non-negative integer \(r\) such that, \(n\) can be written uniquely as \(n=q \times 2^r\). Let \(\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}\) be function defined by
\(\mathbf{f}(\mathbf{n})=\left(\mathbf{r}+\mathbf{1}, \frac{\mathbf{q}+\mathbf{1}}{\mathbf{2}}\right)\). Then,