117105
Let \(\mathrm{N}\) be the set of natural numbers and two functions \(f\) and \(g\) be defined as \(f, g: N \rightarrow N\) such that
\(f(n)= \begin{cases}\frac{n+1}{2} \text { if nis odd } \\ \frac{n}{2} \text { if nis even }\end{cases}\)
and \(g(n)=n-(-1)^n\). Then fog is
117105
Let \(\mathrm{N}\) be the set of natural numbers and two functions \(f\) and \(g\) be defined as \(f, g: N \rightarrow N\) such that
\(f(n)= \begin{cases}\frac{n+1}{2} \text { if nis odd } \\ \frac{n}{2} \text { if nis even }\end{cases}\)
and \(g(n)=n-(-1)^n\). Then fog is
117105
Let \(\mathrm{N}\) be the set of natural numbers and two functions \(f\) and \(g\) be defined as \(f, g: N \rightarrow N\) such that
\(f(n)= \begin{cases}\frac{n+1}{2} \text { if nis odd } \\ \frac{n}{2} \text { if nis even }\end{cases}\)
and \(g(n)=n-(-1)^n\). Then fog is
117105
Let \(\mathrm{N}\) be the set of natural numbers and two functions \(f\) and \(g\) be defined as \(f, g: N \rightarrow N\) such that
\(f(n)= \begin{cases}\frac{n+1}{2} \text { if nis odd } \\ \frac{n}{2} \text { if nis even }\end{cases}\)
and \(g(n)=n-(-1)^n\). Then fog is
117105
Let \(\mathrm{N}\) be the set of natural numbers and two functions \(f\) and \(g\) be defined as \(f, g: N \rightarrow N\) such that
\(f(n)= \begin{cases}\frac{n+1}{2} \text { if nis odd } \\ \frac{n}{2} \text { if nis even }\end{cases}\)
and \(g(n)=n-(-1)^n\). Then fog is