117023 For a suitable chosen real constant a, let a function f:R−{a}→R be defined by f(x)= a−xa+x. Further suppose that for any real number x≠−a and f(x)≠−a, (fof)( x)=x.Then, f(−12) is equal to
D We have,f(x)=a−xa+x[x∈R−{−a}]fof(x)=xf[f(x)]=xa−f(x)a+f(x)=xa−(a−xa+x)a+(a−xa+x)=x(a2−a)+x(a+1)(a2+a)+x(a−1)=x(a2−a)+x(a+1)=(a2+a)x+x2(a−1)x2(a−1)+x(a2+a−a−1)−a2+a=0x2(a−1)+x(a2−1)−(a2−a)=0x2+x(a+1)−a=0a=1f(x)=1−x1+xf(−12)=1−(−12)1+(−12)f(−12)=3212f(−12)=3
117025 If f(x)=log(1+x1−x),−1<x<1, then f(3x+x31+3x2)−f(2x1+x2) is
D Given f(x)=log[(1+x)1−x]f(3x+x31+3x2)−f(2x1+x2)=log(1+(3x+x3)(1+3x2)1−(3x+x31+3x2))−log(1+2x1+x21−2x1+x2)=log(1+3x2+3x+x31+3x2−3x−x3)−log(1+x2+2x1+x2−2x)=log(1+x1−x)3−log(1+x1−x)2=3log(1+x1−x)−2log(1+x1−x)=log(1+x1−x)2=f(x)
117026 log2(9−2x)=10log(3−x), solve for x.
A log2(9−2x)=10log(3−x)log2(9−2x)=(3−x)[∵alogab=b](9−2x)=2(3−x)(9−2x)=232x2x(9−2x)=8−22x+2x⋅9=8Let 2x=y then-−y2+9y−8=0y2−9y+8=0(y−8)(y−1)=0y=8 or y=12x=23 or 2x=20So, x=3 or x=0But x=3 does not satisfy the given equation, since log 0 is not defined.
117027 The number of positive integral solutions of x2+9<(x+3)2<8x+25, is
D We have, given inequality asx2+9<(x+3)2=x2+9<x2+9+6x=6x>0=x>0Again, (x+3)2<8x+25=x2+9+6x<8x+25=x2−2x−16<0=(x−1)2−17<0=(x−1)2<17=x∈(1−17,1+17)Hence, integral value of x are1,2,3,4,5. The number of positive integral solution is 5 .
117028 The greatest value of the function f(x)=xe−x in [0,∞), is
B Given, f(x)=xe−xOn differentiating both sides w.r.t. x, we getf′(x)=e−x(1−x)f′(x)=0x=1Now, f(0)=0limx→∞f(x)=limx→∞xe−x=limx→∞xex=limx→∞1ex=0Hence, the greatest value of f(x) is 1e