Properties of Functions and Graphs
Sets, Relation and Function

117019 The sum of the solutions of the equation is the equation \(|\sqrt{x}-2|+\sqrt{x}(\sqrt{x}-4)+2=0(x>0)\) equal to

1 9
2 12
3 4
4 10
Sets, Relation and Function

117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is

1 \(10^5\)
2 \({ }^{10} \mathrm{C}_5\)
3 \(5^5\)
4 5 !
Sets, Relation and Function

117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to

1 330
2 165
3 190
4 255
Sets, Relation and Function

117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is

1 5
2 20
3 4
4 9
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117019 The sum of the solutions of the equation is the equation \(|\sqrt{x}-2|+\sqrt{x}(\sqrt{x}-4)+2=0(x>0)\) equal to

1 9
2 12
3 4
4 10
Sets, Relation and Function

117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is

1 \(10^5\)
2 \({ }^{10} \mathrm{C}_5\)
3 \(5^5\)
4 5 !
Sets, Relation and Function

117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to

1 330
2 165
3 190
4 255
Sets, Relation and Function

117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is

1 5
2 20
3 4
4 9
Sets, Relation and Function

117019 The sum of the solutions of the equation is the equation \(|\sqrt{x}-2|+\sqrt{x}(\sqrt{x}-4)+2=0(x>0)\) equal to

1 9
2 12
3 4
4 10
Sets, Relation and Function

117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is

1 \(10^5\)
2 \({ }^{10} \mathrm{C}_5\)
3 \(5^5\)
4 5 !
Sets, Relation and Function

117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to

1 330
2 165
3 190
4 255
Sets, Relation and Function

117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is

1 5
2 20
3 4
4 9
Sets, Relation and Function

117019 The sum of the solutions of the equation is the equation \(|\sqrt{x}-2|+\sqrt{x}(\sqrt{x}-4)+2=0(x>0)\) equal to

1 9
2 12
3 4
4 10
Sets, Relation and Function

117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is

1 \(10^5\)
2 \({ }^{10} \mathrm{C}_5\)
3 \(5^5\)
4 5 !
Sets, Relation and Function

117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to

1 330
2 165
3 190
4 255
Sets, Relation and Function

117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is

1 5
2 20
3 4
4 9
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here