117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is
117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to
117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is
117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is
117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to
117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is
117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is
117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to
117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is
117020 Let \(A=\{1,2,3, \ldots . .10\}\) and \(f: A \rightarrow A\) be defined as \(f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x, \text { If } x \text { is even }\end{array}\right.\) Then, the number of possible functions \(g: A \rightarrow A\), such that gof \(=\mathbf{f}\) is
117021 Let \(a, b, c \in R\). If \(f(x)=a x^2+b x+c\) is such that \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{3}\) and \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y})+\mathbf{x y}, \forall \mathbf{x}\), \(y \in R\), then \(\sum_{n=1}^{10} f(n)\) is equal to
117022 Let \(f: R \rightarrow R\) be a function which satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})=\mathbf{f}(\mathbf{x})+\mathbf{f}(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\). If \(\mathbf{f}(\mathbf{1})=2\) and \(g(n)=\sum_{k=1}^{(n-1)} f(k), n \in N\), then the value of \(n\), for which \(g(n)=20\) is