117023
For a suitable chosen real constant a, let a function \(\mathbf{f}: \mathbf{R}-\{\mathbf{a}\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{a-x}{a+x}\). Further suppose that for any real number \(x \neq-a\) and \(f(x) \neq-a\), (fof)( \(x)=x\).
Then, \(f\left(-\frac{1}{2}\right)\) is equal to
117023
For a suitable chosen real constant a, let a function \(\mathbf{f}: \mathbf{R}-\{\mathbf{a}\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{a-x}{a+x}\). Further suppose that for any real number \(x \neq-a\) and \(f(x) \neq-a\), (fof)( \(x)=x\).
Then, \(f\left(-\frac{1}{2}\right)\) is equal to
117023
For a suitable chosen real constant a, let a function \(\mathbf{f}: \mathbf{R}-\{\mathbf{a}\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{a-x}{a+x}\). Further suppose that for any real number \(x \neq-a\) and \(f(x) \neq-a\), (fof)( \(x)=x\).
Then, \(f\left(-\frac{1}{2}\right)\) is equal to
117023
For a suitable chosen real constant a, let a function \(\mathbf{f}: \mathbf{R}-\{\mathbf{a}\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{a-x}{a+x}\). Further suppose that for any real number \(x \neq-a\) and \(f(x) \neq-a\), (fof)( \(x)=x\).
Then, \(f\left(-\frac{1}{2}\right)\) is equal to
117023
For a suitable chosen real constant a, let a function \(\mathbf{f}: \mathbf{R}-\{\mathbf{a}\} \rightarrow \mathbf{R}\) be defined by \(\mathbf{f}(\mathbf{x})=\) \(\frac{a-x}{a+x}\). Further suppose that for any real number \(x \neq-a\) and \(f(x) \neq-a\), (fof)( \(x)=x\).
Then, \(f\left(-\frac{1}{2}\right)\) is equal to