C Given, \(f(x)=x \frac{a^x-1}{a^x+1}\) \(f(-x)=(-x) \frac{a^{-x}-1}{a^{-x}+1}\) For even function \(f(x)+f(-x)=0\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}\right)+x\left(\frac{a^{-x}-1}{a^{-x}+1}\right)\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}+\frac{1-a^x}{1+a^x}\right)\) \(\Rightarrow x\left(\frac{a^x-1+1-a^x}{1+a^x}\right)\) \(\Rightarrow \quad x\left[\frac{0}{1+a^x}\right]\) \(=0\)Hence, it is even formation.
Rajasthan PET-2003
Sets, Relation and Function
117008
If \(\boldsymbol{f}(\boldsymbol{\theta})=\tan \theta\), then the value of \(\frac{\boldsymbol{f}(\boldsymbol{\theta})-\boldsymbol{f}(\phi)}{\boldsymbol{1}+\boldsymbol{f}(\boldsymbol{\theta}) \boldsymbol{f}(\phi)}\) is
C Given, \(f(x)=x \frac{a^x-1}{a^x+1}\) \(f(-x)=(-x) \frac{a^{-x}-1}{a^{-x}+1}\) For even function \(f(x)+f(-x)=0\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}\right)+x\left(\frac{a^{-x}-1}{a^{-x}+1}\right)\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}+\frac{1-a^x}{1+a^x}\right)\) \(\Rightarrow x\left(\frac{a^x-1+1-a^x}{1+a^x}\right)\) \(\Rightarrow \quad x\left[\frac{0}{1+a^x}\right]\) \(=0\)Hence, it is even formation.
Rajasthan PET-2003
Sets, Relation and Function
117008
If \(\boldsymbol{f}(\boldsymbol{\theta})=\tan \theta\), then the value of \(\frac{\boldsymbol{f}(\boldsymbol{\theta})-\boldsymbol{f}(\phi)}{\boldsymbol{1}+\boldsymbol{f}(\boldsymbol{\theta}) \boldsymbol{f}(\phi)}\) is
C Given, \(f(x)=x \frac{a^x-1}{a^x+1}\) \(f(-x)=(-x) \frac{a^{-x}-1}{a^{-x}+1}\) For even function \(f(x)+f(-x)=0\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}\right)+x\left(\frac{a^{-x}-1}{a^{-x}+1}\right)\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}+\frac{1-a^x}{1+a^x}\right)\) \(\Rightarrow x\left(\frac{a^x-1+1-a^x}{1+a^x}\right)\) \(\Rightarrow \quad x\left[\frac{0}{1+a^x}\right]\) \(=0\)Hence, it is even formation.
Rajasthan PET-2003
Sets, Relation and Function
117008
If \(\boldsymbol{f}(\boldsymbol{\theta})=\tan \theta\), then the value of \(\frac{\boldsymbol{f}(\boldsymbol{\theta})-\boldsymbol{f}(\phi)}{\boldsymbol{1}+\boldsymbol{f}(\boldsymbol{\theta}) \boldsymbol{f}(\phi)}\) is
C Given, \(f(x)=x \frac{a^x-1}{a^x+1}\) \(f(-x)=(-x) \frac{a^{-x}-1}{a^{-x}+1}\) For even function \(f(x)+f(-x)=0\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}\right)+x\left(\frac{a^{-x}-1}{a^{-x}+1}\right)\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}+\frac{1-a^x}{1+a^x}\right)\) \(\Rightarrow x\left(\frac{a^x-1+1-a^x}{1+a^x}\right)\) \(\Rightarrow \quad x\left[\frac{0}{1+a^x}\right]\) \(=0\)Hence, it is even formation.
Rajasthan PET-2003
Sets, Relation and Function
117008
If \(\boldsymbol{f}(\boldsymbol{\theta})=\tan \theta\), then the value of \(\frac{\boldsymbol{f}(\boldsymbol{\theta})-\boldsymbol{f}(\phi)}{\boldsymbol{1}+\boldsymbol{f}(\boldsymbol{\theta}) \boldsymbol{f}(\phi)}\) is
C Given, \(f(x)=x \frac{a^x-1}{a^x+1}\) \(f(-x)=(-x) \frac{a^{-x}-1}{a^{-x}+1}\) For even function \(f(x)+f(-x)=0\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}\right)+x\left(\frac{a^{-x}-1}{a^{-x}+1}\right)\) \(\Rightarrow x\left(\frac{a^x-1}{a^x+1}+\frac{1-a^x}{1+a^x}\right)\) \(\Rightarrow x\left(\frac{a^x-1+1-a^x}{1+a^x}\right)\) \(\Rightarrow \quad x\left[\frac{0}{1+a^x}\right]\) \(=0\)Hence, it is even formation.
Rajasthan PET-2003
Sets, Relation and Function
117008
If \(\boldsymbol{f}(\boldsymbol{\theta})=\tan \theta\), then the value of \(\frac{\boldsymbol{f}(\boldsymbol{\theta})-\boldsymbol{f}(\phi)}{\boldsymbol{1}+\boldsymbol{f}(\boldsymbol{\theta}) \boldsymbol{f}(\phi)}\) is