Properties of Functions and Graphs
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117002 The numbers \(a_n s\) are defined by
\(a_0=1, a_{n+1}=3 n^2+n+a_n,(n \geq 0)\)
Then, \(a_n\) is equal to

1 \(n^3+n^2+1\)
2 \(n^3-n^2+1\)
3 \(n^3-n^2\)
4 \(n^3+n^2\)
Sets, Relation and Function

117003 If \(|x-2|+|x-3|=7\), then the value of \(x\) is

1 -1
2 6
3 -1 or 6
4 None of these
Sets, Relation and Function

117004 If \(4^{\log _3 \sqrt{3}}+9^{\log _2 2^2}=10^{\log _x 83}(x \in R)\), then the value of \(x\) is

1 4
2 9
3 10
4 11
Sets, Relation and Function

117015 If \(f(x)=\frac{1+x}{1-x} ; x \neq 1\) then \(f(x) \cdot f(y)=\)

1 \(f\left(\frac{x+y}{1-x y}\right)\)
2 \(f(x \cdot y)\)
3 \(f\left(\frac{x+y}{1+x y}\right)\)
4 \(\mathrm{f}\left(\frac{1}{1+x y}\right)\)
Sets, Relation and Function

117002 The numbers \(a_n s\) are defined by
\(a_0=1, a_{n+1}=3 n^2+n+a_n,(n \geq 0)\)
Then, \(a_n\) is equal to

1 \(n^3+n^2+1\)
2 \(n^3-n^2+1\)
3 \(n^3-n^2\)
4 \(n^3+n^2\)
Sets, Relation and Function

117003 If \(|x-2|+|x-3|=7\), then the value of \(x\) is

1 -1
2 6
3 -1 or 6
4 None of these
Sets, Relation and Function

117004 If \(4^{\log _3 \sqrt{3}}+9^{\log _2 2^2}=10^{\log _x 83}(x \in R)\), then the value of \(x\) is

1 4
2 9
3 10
4 11
Sets, Relation and Function

117015 If \(f(x)=\frac{1+x}{1-x} ; x \neq 1\) then \(f(x) \cdot f(y)=\)

1 \(f\left(\frac{x+y}{1-x y}\right)\)
2 \(f(x \cdot y)\)
3 \(f\left(\frac{x+y}{1+x y}\right)\)
4 \(\mathrm{f}\left(\frac{1}{1+x y}\right)\)
Sets, Relation and Function

117002 The numbers \(a_n s\) are defined by
\(a_0=1, a_{n+1}=3 n^2+n+a_n,(n \geq 0)\)
Then, \(a_n\) is equal to

1 \(n^3+n^2+1\)
2 \(n^3-n^2+1\)
3 \(n^3-n^2\)
4 \(n^3+n^2\)
Sets, Relation and Function

117003 If \(|x-2|+|x-3|=7\), then the value of \(x\) is

1 -1
2 6
3 -1 or 6
4 None of these
Sets, Relation and Function

117004 If \(4^{\log _3 \sqrt{3}}+9^{\log _2 2^2}=10^{\log _x 83}(x \in R)\), then the value of \(x\) is

1 4
2 9
3 10
4 11
Sets, Relation and Function

117015 If \(f(x)=\frac{1+x}{1-x} ; x \neq 1\) then \(f(x) \cdot f(y)=\)

1 \(f\left(\frac{x+y}{1-x y}\right)\)
2 \(f(x \cdot y)\)
3 \(f\left(\frac{x+y}{1+x y}\right)\)
4 \(\mathrm{f}\left(\frac{1}{1+x y}\right)\)
Sets, Relation and Function

117002 The numbers \(a_n s\) are defined by
\(a_0=1, a_{n+1}=3 n^2+n+a_n,(n \geq 0)\)
Then, \(a_n\) is equal to

1 \(n^3+n^2+1\)
2 \(n^3-n^2+1\)
3 \(n^3-n^2\)
4 \(n^3+n^2\)
Sets, Relation and Function

117003 If \(|x-2|+|x-3|=7\), then the value of \(x\) is

1 -1
2 6
3 -1 or 6
4 None of these
Sets, Relation and Function

117004 If \(4^{\log _3 \sqrt{3}}+9^{\log _2 2^2}=10^{\log _x 83}(x \in R)\), then the value of \(x\) is

1 4
2 9
3 10
4 11
Sets, Relation and Function

117015 If \(f(x)=\frac{1+x}{1-x} ; x \neq 1\) then \(f(x) \cdot f(y)=\)

1 \(f\left(\frac{x+y}{1-x y}\right)\)
2 \(f(x \cdot y)\)
3 \(f\left(\frac{x+y}{1+x y}\right)\)
4 \(\mathrm{f}\left(\frac{1}{1+x y}\right)\)