Properties of Functions and Graphs
Sets, Relation and Function

116998 If \(n\) be any integer, then \(n(n+1)(2 n+1)\) is:

1 odd number
2 integral multiple of 6
3 perfect square
4 does not necessarily have any of the foregoing proof
Sets, Relation and Function

116999 If \(\boldsymbol{f}(\mathrm{x})=\left\{\begin{array}{l}3 \mathrm{x}^2+12 x-1,-1 \leq x \leq 2 \\ 37-x, \quad 2 \leq x \leq 3\end{array}\right.\), then

1 \(f(\mathrm{x})\) is decreasing on \([-1,2]\)
2 \(f^{\prime}(2)\) does not exist
3 \(f(\mathrm{x})\) has the maximum value at \(\mathrm{x}=2\)
4 None of the above
Sets, Relation and Function

117000 If \(\log _3 2, \log _3\left(2^x-5\right)\) and \(\log _3\left(2^x-\frac{7}{2}\right)\) are in \(A P\), the value of \(x\) is

1 2
2 3
3 0
4 \(\frac{1}{3}\)
Sets, Relation and Function

117001 If \(f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) \cdot f(\mathrm{y}), f(3)=3, f^{\prime}(0)=11\), then \(f^{\prime}(3)\) is equal to

1 \(11 . \mathrm{e}^{33}\)
2 33
3 11
4 \(\log ^{33}\)
Sets, Relation and Function

116998 If \(n\) be any integer, then \(n(n+1)(2 n+1)\) is:

1 odd number
2 integral multiple of 6
3 perfect square
4 does not necessarily have any of the foregoing proof
Sets, Relation and Function

116999 If \(\boldsymbol{f}(\mathrm{x})=\left\{\begin{array}{l}3 \mathrm{x}^2+12 x-1,-1 \leq x \leq 2 \\ 37-x, \quad 2 \leq x \leq 3\end{array}\right.\), then

1 \(f(\mathrm{x})\) is decreasing on \([-1,2]\)
2 \(f^{\prime}(2)\) does not exist
3 \(f(\mathrm{x})\) has the maximum value at \(\mathrm{x}=2\)
4 None of the above
Sets, Relation and Function

117000 If \(\log _3 2, \log _3\left(2^x-5\right)\) and \(\log _3\left(2^x-\frac{7}{2}\right)\) are in \(A P\), the value of \(x\) is

1 2
2 3
3 0
4 \(\frac{1}{3}\)
Sets, Relation and Function

117001 If \(f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) \cdot f(\mathrm{y}), f(3)=3, f^{\prime}(0)=11\), then \(f^{\prime}(3)\) is equal to

1 \(11 . \mathrm{e}^{33}\)
2 33
3 11
4 \(\log ^{33}\)
Sets, Relation and Function

116998 If \(n\) be any integer, then \(n(n+1)(2 n+1)\) is:

1 odd number
2 integral multiple of 6
3 perfect square
4 does not necessarily have any of the foregoing proof
Sets, Relation and Function

116999 If \(\boldsymbol{f}(\mathrm{x})=\left\{\begin{array}{l}3 \mathrm{x}^2+12 x-1,-1 \leq x \leq 2 \\ 37-x, \quad 2 \leq x \leq 3\end{array}\right.\), then

1 \(f(\mathrm{x})\) is decreasing on \([-1,2]\)
2 \(f^{\prime}(2)\) does not exist
3 \(f(\mathrm{x})\) has the maximum value at \(\mathrm{x}=2\)
4 None of the above
Sets, Relation and Function

117000 If \(\log _3 2, \log _3\left(2^x-5\right)\) and \(\log _3\left(2^x-\frac{7}{2}\right)\) are in \(A P\), the value of \(x\) is

1 2
2 3
3 0
4 \(\frac{1}{3}\)
Sets, Relation and Function

117001 If \(f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) \cdot f(\mathrm{y}), f(3)=3, f^{\prime}(0)=11\), then \(f^{\prime}(3)\) is equal to

1 \(11 . \mathrm{e}^{33}\)
2 33
3 11
4 \(\log ^{33}\)
Sets, Relation and Function

116998 If \(n\) be any integer, then \(n(n+1)(2 n+1)\) is:

1 odd number
2 integral multiple of 6
3 perfect square
4 does not necessarily have any of the foregoing proof
Sets, Relation and Function

116999 If \(\boldsymbol{f}(\mathrm{x})=\left\{\begin{array}{l}3 \mathrm{x}^2+12 x-1,-1 \leq x \leq 2 \\ 37-x, \quad 2 \leq x \leq 3\end{array}\right.\), then

1 \(f(\mathrm{x})\) is decreasing on \([-1,2]\)
2 \(f^{\prime}(2)\) does not exist
3 \(f(\mathrm{x})\) has the maximum value at \(\mathrm{x}=2\)
4 None of the above
Sets, Relation and Function

117000 If \(\log _3 2, \log _3\left(2^x-5\right)\) and \(\log _3\left(2^x-\frac{7}{2}\right)\) are in \(A P\), the value of \(x\) is

1 2
2 3
3 0
4 \(\frac{1}{3}\)
Sets, Relation and Function

117001 If \(f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) \cdot f(\mathrm{y}), f(3)=3, f^{\prime}(0)=11\), then \(f^{\prime}(3)\) is equal to

1 \(11 . \mathrm{e}^{33}\)
2 33
3 11
4 \(\log ^{33}\)