Properties of Functions and Graphs
Sets, Relation and Function

116974 If \(\log _4 2+\log _4 4+\log _4 x+\log _4 16=6\), then value of \(x\) is

1 64
2 4
3 8
4 32
Sets, Relation and Function

116976 If \(f(x)=\cos (\log x)\), then \(f(x) \quad f(y)\) \(-\frac{1}{2}\left[\mathbf{f}\left(\frac{x}{y}\right)+f(x y)\right]\) has the value

1 -1
2 \(\frac{1}{2}\)
3 -2
4 zero
Sets, Relation and Function

116977 The number of solution of \(\log _4(x-1)=\log _2(x-3)\) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116978 If \(a=\log _2 3, b=\log _2 5\) and equal to \(c=\log _7 2\), then \(\log _{140} 63\) in terms of \(a, b, c\) is

1 \(\frac{2 a c+1}{2 a+a b c+1}\)
2 \(\frac{2 a c+1}{2 a+c+a}\)
3 \(\frac{2 \mathrm{ac}+1}{2 \mathrm{c}+\mathrm{ab}+\mathrm{a}}\)
4 None of these
Sets, Relation and Function

116979 If \(\alpha \in\left[0, \frac{\pi}{2}\right)\),then \(\sqrt{\mathrm{x}^2+\mathrm{x}}+\frac{\tan ^2 \alpha}{\sqrt{\mathrm{x}^2+\mathrm{x}}}\) is always greater than or equal to

1 \(2 \tan \alpha\)
2 1
3 2
4 \(\sec ^2 \alpha\)
Sets, Relation and Function

116974 If \(\log _4 2+\log _4 4+\log _4 x+\log _4 16=6\), then value of \(x\) is

1 64
2 4
3 8
4 32
Sets, Relation and Function

116976 If \(f(x)=\cos (\log x)\), then \(f(x) \quad f(y)\) \(-\frac{1}{2}\left[\mathbf{f}\left(\frac{x}{y}\right)+f(x y)\right]\) has the value

1 -1
2 \(\frac{1}{2}\)
3 -2
4 zero
Sets, Relation and Function

116977 The number of solution of \(\log _4(x-1)=\log _2(x-3)\) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116978 If \(a=\log _2 3, b=\log _2 5\) and equal to \(c=\log _7 2\), then \(\log _{140} 63\) in terms of \(a, b, c\) is

1 \(\frac{2 a c+1}{2 a+a b c+1}\)
2 \(\frac{2 a c+1}{2 a+c+a}\)
3 \(\frac{2 \mathrm{ac}+1}{2 \mathrm{c}+\mathrm{ab}+\mathrm{a}}\)
4 None of these
Sets, Relation and Function

116979 If \(\alpha \in\left[0, \frac{\pi}{2}\right)\),then \(\sqrt{\mathrm{x}^2+\mathrm{x}}+\frac{\tan ^2 \alpha}{\sqrt{\mathrm{x}^2+\mathrm{x}}}\) is always greater than or equal to

1 \(2 \tan \alpha\)
2 1
3 2
4 \(\sec ^2 \alpha\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116974 If \(\log _4 2+\log _4 4+\log _4 x+\log _4 16=6\), then value of \(x\) is

1 64
2 4
3 8
4 32
Sets, Relation and Function

116976 If \(f(x)=\cos (\log x)\), then \(f(x) \quad f(y)\) \(-\frac{1}{2}\left[\mathbf{f}\left(\frac{x}{y}\right)+f(x y)\right]\) has the value

1 -1
2 \(\frac{1}{2}\)
3 -2
4 zero
Sets, Relation and Function

116977 The number of solution of \(\log _4(x-1)=\log _2(x-3)\) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116978 If \(a=\log _2 3, b=\log _2 5\) and equal to \(c=\log _7 2\), then \(\log _{140} 63\) in terms of \(a, b, c\) is

1 \(\frac{2 a c+1}{2 a+a b c+1}\)
2 \(\frac{2 a c+1}{2 a+c+a}\)
3 \(\frac{2 \mathrm{ac}+1}{2 \mathrm{c}+\mathrm{ab}+\mathrm{a}}\)
4 None of these
Sets, Relation and Function

116979 If \(\alpha \in\left[0, \frac{\pi}{2}\right)\),then \(\sqrt{\mathrm{x}^2+\mathrm{x}}+\frac{\tan ^2 \alpha}{\sqrt{\mathrm{x}^2+\mathrm{x}}}\) is always greater than or equal to

1 \(2 \tan \alpha\)
2 1
3 2
4 \(\sec ^2 \alpha\)
Sets, Relation and Function

116974 If \(\log _4 2+\log _4 4+\log _4 x+\log _4 16=6\), then value of \(x\) is

1 64
2 4
3 8
4 32
Sets, Relation and Function

116976 If \(f(x)=\cos (\log x)\), then \(f(x) \quad f(y)\) \(-\frac{1}{2}\left[\mathbf{f}\left(\frac{x}{y}\right)+f(x y)\right]\) has the value

1 -1
2 \(\frac{1}{2}\)
3 -2
4 zero
Sets, Relation and Function

116977 The number of solution of \(\log _4(x-1)=\log _2(x-3)\) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116978 If \(a=\log _2 3, b=\log _2 5\) and equal to \(c=\log _7 2\), then \(\log _{140} 63\) in terms of \(a, b, c\) is

1 \(\frac{2 a c+1}{2 a+a b c+1}\)
2 \(\frac{2 a c+1}{2 a+c+a}\)
3 \(\frac{2 \mathrm{ac}+1}{2 \mathrm{c}+\mathrm{ab}+\mathrm{a}}\)
4 None of these
Sets, Relation and Function

116979 If \(\alpha \in\left[0, \frac{\pi}{2}\right)\),then \(\sqrt{\mathrm{x}^2+\mathrm{x}}+\frac{\tan ^2 \alpha}{\sqrt{\mathrm{x}^2+\mathrm{x}}}\) is always greater than or equal to

1 \(2 \tan \alpha\)
2 1
3 2
4 \(\sec ^2 \alpha\)
Sets, Relation and Function

116974 If \(\log _4 2+\log _4 4+\log _4 x+\log _4 16=6\), then value of \(x\) is

1 64
2 4
3 8
4 32
Sets, Relation and Function

116976 If \(f(x)=\cos (\log x)\), then \(f(x) \quad f(y)\) \(-\frac{1}{2}\left[\mathbf{f}\left(\frac{x}{y}\right)+f(x y)\right]\) has the value

1 -1
2 \(\frac{1}{2}\)
3 -2
4 zero
Sets, Relation and Function

116977 The number of solution of \(\log _4(x-1)=\log _2(x-3)\) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116978 If \(a=\log _2 3, b=\log _2 5\) and equal to \(c=\log _7 2\), then \(\log _{140} 63\) in terms of \(a, b, c\) is

1 \(\frac{2 a c+1}{2 a+a b c+1}\)
2 \(\frac{2 a c+1}{2 a+c+a}\)
3 \(\frac{2 \mathrm{ac}+1}{2 \mathrm{c}+\mathrm{ab}+\mathrm{a}}\)
4 None of these
Sets, Relation and Function

116979 If \(\alpha \in\left[0, \frac{\pi}{2}\right)\),then \(\sqrt{\mathrm{x}^2+\mathrm{x}}+\frac{\tan ^2 \alpha}{\sqrt{\mathrm{x}^2+\mathrm{x}}}\) is always greater than or equal to

1 \(2 \tan \alpha\)
2 1
3 2
4 \(\sec ^2 \alpha\)