Properties of Functions and Graphs
Sets, Relation and Function

116970 If \(f(x)=e^x g(x), g(0)=2, g^{\prime}(0)=1\), then \(f(0)\) is equal to

1 1
2 3
3 2
4 0
Sets, Relation and Function

116971 If \(f(x)=\left|\log _e\right| x||\), then \(f_0(x)\) equals

1 \(\frac{1}{|\mathbf{x}|} \mathrm{x} \neq 0\)
2 \(\frac{1}{x}\) for \(|x|>1\) and \(\frac{-1}{x}\) for \(|x|\lt 1\)
3 \(\frac{-1}{\mathrm{x}}\) for \(|\mathrm{x}|>1\) and \(\frac{1}{\mathrm{x}}\) for \(|\mathrm{x}|\lt 1\)
4 \(\frac{1}{\mathrm{x}}\) for \(\mathrm{x}>0\) and \(-\frac{1}{\mathrm{x}}\) for \(\mathrm{x}\lt 0\)
Sets, Relation and Function

116972 If \(f(x+2 y, x-2 y)=x y\), then \(f(x, y)\) equals

1 \(\frac{x^2-y^2}{8}\)
2 \(\frac{x^2-y^2}{4}\)
3 \(\frac{x^2+y^2}{4}\)
4 \(\frac{x^2-y^2}{2}\)
Sets, Relation and Function

116973 If \(f(x)\) is an odd periodic function with period 2 , then \(f(4)\) equals

1 0
2 2
3 4
4 -4
Sets, Relation and Function

116970 If \(f(x)=e^x g(x), g(0)=2, g^{\prime}(0)=1\), then \(f(0)\) is equal to

1 1
2 3
3 2
4 0
Sets, Relation and Function

116971 If \(f(x)=\left|\log _e\right| x||\), then \(f_0(x)\) equals

1 \(\frac{1}{|\mathbf{x}|} \mathrm{x} \neq 0\)
2 \(\frac{1}{x}\) for \(|x|>1\) and \(\frac{-1}{x}\) for \(|x|\lt 1\)
3 \(\frac{-1}{\mathrm{x}}\) for \(|\mathrm{x}|>1\) and \(\frac{1}{\mathrm{x}}\) for \(|\mathrm{x}|\lt 1\)
4 \(\frac{1}{\mathrm{x}}\) for \(\mathrm{x}>0\) and \(-\frac{1}{\mathrm{x}}\) for \(\mathrm{x}\lt 0\)
Sets, Relation and Function

116972 If \(f(x+2 y, x-2 y)=x y\), then \(f(x, y)\) equals

1 \(\frac{x^2-y^2}{8}\)
2 \(\frac{x^2-y^2}{4}\)
3 \(\frac{x^2+y^2}{4}\)
4 \(\frac{x^2-y^2}{2}\)
Sets, Relation and Function

116973 If \(f(x)\) is an odd periodic function with period 2 , then \(f(4)\) equals

1 0
2 2
3 4
4 -4
Sets, Relation and Function

116970 If \(f(x)=e^x g(x), g(0)=2, g^{\prime}(0)=1\), then \(f(0)\) is equal to

1 1
2 3
3 2
4 0
Sets, Relation and Function

116971 If \(f(x)=\left|\log _e\right| x||\), then \(f_0(x)\) equals

1 \(\frac{1}{|\mathbf{x}|} \mathrm{x} \neq 0\)
2 \(\frac{1}{x}\) for \(|x|>1\) and \(\frac{-1}{x}\) for \(|x|\lt 1\)
3 \(\frac{-1}{\mathrm{x}}\) for \(|\mathrm{x}|>1\) and \(\frac{1}{\mathrm{x}}\) for \(|\mathrm{x}|\lt 1\)
4 \(\frac{1}{\mathrm{x}}\) for \(\mathrm{x}>0\) and \(-\frac{1}{\mathrm{x}}\) for \(\mathrm{x}\lt 0\)
Sets, Relation and Function

116972 If \(f(x+2 y, x-2 y)=x y\), then \(f(x, y)\) equals

1 \(\frac{x^2-y^2}{8}\)
2 \(\frac{x^2-y^2}{4}\)
3 \(\frac{x^2+y^2}{4}\)
4 \(\frac{x^2-y^2}{2}\)
Sets, Relation and Function

116973 If \(f(x)\) is an odd periodic function with period 2 , then \(f(4)\) equals

1 0
2 2
3 4
4 -4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116970 If \(f(x)=e^x g(x), g(0)=2, g^{\prime}(0)=1\), then \(f(0)\) is equal to

1 1
2 3
3 2
4 0
Sets, Relation and Function

116971 If \(f(x)=\left|\log _e\right| x||\), then \(f_0(x)\) equals

1 \(\frac{1}{|\mathbf{x}|} \mathrm{x} \neq 0\)
2 \(\frac{1}{x}\) for \(|x|>1\) and \(\frac{-1}{x}\) for \(|x|\lt 1\)
3 \(\frac{-1}{\mathrm{x}}\) for \(|\mathrm{x}|>1\) and \(\frac{1}{\mathrm{x}}\) for \(|\mathrm{x}|\lt 1\)
4 \(\frac{1}{\mathrm{x}}\) for \(\mathrm{x}>0\) and \(-\frac{1}{\mathrm{x}}\) for \(\mathrm{x}\lt 0\)
Sets, Relation and Function

116972 If \(f(x+2 y, x-2 y)=x y\), then \(f(x, y)\) equals

1 \(\frac{x^2-y^2}{8}\)
2 \(\frac{x^2-y^2}{4}\)
3 \(\frac{x^2+y^2}{4}\)
4 \(\frac{x^2-y^2}{2}\)
Sets, Relation and Function

116973 If \(f(x)\) is an odd periodic function with period 2 , then \(f(4)\) equals

1 0
2 2
3 4
4 -4