Properties of Functions and Graphs
Sets, Relation and Function

116964 In the function \(f(x)=\frac{a^x+a^{-x}}{2},(a>2)\) then \(f(x+y)+f(x-y)\) is equal to

1 \(f(x)-f(y)\)
2 \(f(y)\)
3 \(2 \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\)
4 \(f(x) f(y)\)
Sets, Relation and Function

116965 The solution of the equation
\(\log _{101} \log _7(\sqrt{x+7}+\sqrt{x})=0\) is

1 3
2 7
3 9
4 49
Sets, Relation and Function

116966 Consider the non-constant differentiable function \(f\) of one variable which obeys the relation \(\frac{f(x)}{f(y)}=f(x-y)\). If \(f^{\prime}(0)=p\) and \(f^{\prime}(5)=q\), then \(f^{\prime}(-5)\) is

1 \(\frac{p^2}{q}\)
2 \(\frac{\mathrm{q}}{\mathrm{p}}\)
3 \(\frac{p}{q}\)
4 \(\mathrm{q}\)
Sets, Relation and Function

116969 If \(\log _2\left(9^{x-1}+7\right)-\log _2\left(3^{x-1}+1\right)=2\), then values of \(x\) are

1 1,2
2 0,2
3 0,1
4 1,4
Sets, Relation and Function

116964 In the function \(f(x)=\frac{a^x+a^{-x}}{2},(a>2)\) then \(f(x+y)+f(x-y)\) is equal to

1 \(f(x)-f(y)\)
2 \(f(y)\)
3 \(2 \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\)
4 \(f(x) f(y)\)
Sets, Relation and Function

116965 The solution of the equation
\(\log _{101} \log _7(\sqrt{x+7}+\sqrt{x})=0\) is

1 3
2 7
3 9
4 49
Sets, Relation and Function

116966 Consider the non-constant differentiable function \(f\) of one variable which obeys the relation \(\frac{f(x)}{f(y)}=f(x-y)\). If \(f^{\prime}(0)=p\) and \(f^{\prime}(5)=q\), then \(f^{\prime}(-5)\) is

1 \(\frac{p^2}{q}\)
2 \(\frac{\mathrm{q}}{\mathrm{p}}\)
3 \(\frac{p}{q}\)
4 \(\mathrm{q}\)
Sets, Relation and Function

116969 If \(\log _2\left(9^{x-1}+7\right)-\log _2\left(3^{x-1}+1\right)=2\), then values of \(x\) are

1 1,2
2 0,2
3 0,1
4 1,4
Sets, Relation and Function

116964 In the function \(f(x)=\frac{a^x+a^{-x}}{2},(a>2)\) then \(f(x+y)+f(x-y)\) is equal to

1 \(f(x)-f(y)\)
2 \(f(y)\)
3 \(2 \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\)
4 \(f(x) f(y)\)
Sets, Relation and Function

116965 The solution of the equation
\(\log _{101} \log _7(\sqrt{x+7}+\sqrt{x})=0\) is

1 3
2 7
3 9
4 49
Sets, Relation and Function

116966 Consider the non-constant differentiable function \(f\) of one variable which obeys the relation \(\frac{f(x)}{f(y)}=f(x-y)\). If \(f^{\prime}(0)=p\) and \(f^{\prime}(5)=q\), then \(f^{\prime}(-5)\) is

1 \(\frac{p^2}{q}\)
2 \(\frac{\mathrm{q}}{\mathrm{p}}\)
3 \(\frac{p}{q}\)
4 \(\mathrm{q}\)
Sets, Relation and Function

116969 If \(\log _2\left(9^{x-1}+7\right)-\log _2\left(3^{x-1}+1\right)=2\), then values of \(x\) are

1 1,2
2 0,2
3 0,1
4 1,4
Sets, Relation and Function

116964 In the function \(f(x)=\frac{a^x+a^{-x}}{2},(a>2)\) then \(f(x+y)+f(x-y)\) is equal to

1 \(f(x)-f(y)\)
2 \(f(y)\)
3 \(2 \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})\)
4 \(f(x) f(y)\)
Sets, Relation and Function

116965 The solution of the equation
\(\log _{101} \log _7(\sqrt{x+7}+\sqrt{x})=0\) is

1 3
2 7
3 9
4 49
Sets, Relation and Function

116966 Consider the non-constant differentiable function \(f\) of one variable which obeys the relation \(\frac{f(x)}{f(y)}=f(x-y)\). If \(f^{\prime}(0)=p\) and \(f^{\prime}(5)=q\), then \(f^{\prime}(-5)\) is

1 \(\frac{p^2}{q}\)
2 \(\frac{\mathrm{q}}{\mathrm{p}}\)
3 \(\frac{p}{q}\)
4 \(\mathrm{q}\)
Sets, Relation and Function

116969 If \(\log _2\left(9^{x-1}+7\right)-\log _2\left(3^{x-1}+1\right)=2\), then values of \(x\) are

1 1,2
2 0,2
3 0,1
4 1,4