Properties of Functions and Graphs
Sets, Relation and Function

116946 The number of non-constant functions f from \(X\) \(=\{0,1,2\}\) to \(Y=\{1,2,3,4,5,6,7,8\}\) such that
\(f(i) \leq f(j)\) for \(i, j \in X\) and \(i\lt j\) is

1 120
2 92
3 56
4 112
Sets, Relation and Function

116947 If the function \(f:[a, b] \rightarrow\) defined by
\(f(x)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin x & 1 \\ 1+\cos x & 1 & 1\end{array}\right]\) is one-one and onto, then

1 \(\mathrm{a}=\frac{-\pi}{4}, \mathrm{~b}=\frac{\pi}{6}\)
2 \(\mathrm{a}=\frac{-\pi}{2}, \mathrm{~b}=\frac{\pi}{2}\)
3 \(\mathrm{a}=\frac{-\pi}{6}, \mathrm{~b}=\frac{\pi}{4}\)
4 \(\mathrm{a}=\pi, \mathrm{b}=\pi\)
Sets, Relation and Function

116948 If \(\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as \(\mathbf{f}(\mathbf{x})=\mathbf{x}-[\mathbf{x}]+3, \forall \mathbf{x}\) \(\pi R\), then \(f\) is

1 Not a function
2 A periodic function with period \(\pi\)
3 A periodic function with period 1
4 An invertible function
Sets, Relation and Function

116949 If \(5^x=(0.5)^y=1000\), then \(\frac{1}{x}-\frac{1}{y}\) is equal to

1 1
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Sets, Relation and Function

116946 The number of non-constant functions f from \(X\) \(=\{0,1,2\}\) to \(Y=\{1,2,3,4,5,6,7,8\}\) such that
\(f(i) \leq f(j)\) for \(i, j \in X\) and \(i\lt j\) is

1 120
2 92
3 56
4 112
Sets, Relation and Function

116947 If the function \(f:[a, b] \rightarrow\) defined by
\(f(x)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin x & 1 \\ 1+\cos x & 1 & 1\end{array}\right]\) is one-one and onto, then

1 \(\mathrm{a}=\frac{-\pi}{4}, \mathrm{~b}=\frac{\pi}{6}\)
2 \(\mathrm{a}=\frac{-\pi}{2}, \mathrm{~b}=\frac{\pi}{2}\)
3 \(\mathrm{a}=\frac{-\pi}{6}, \mathrm{~b}=\frac{\pi}{4}\)
4 \(\mathrm{a}=\pi, \mathrm{b}=\pi\)
Sets, Relation and Function

116948 If \(\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as \(\mathbf{f}(\mathbf{x})=\mathbf{x}-[\mathbf{x}]+3, \forall \mathbf{x}\) \(\pi R\), then \(f\) is

1 Not a function
2 A periodic function with period \(\pi\)
3 A periodic function with period 1
4 An invertible function
Sets, Relation and Function

116949 If \(5^x=(0.5)^y=1000\), then \(\frac{1}{x}-\frac{1}{y}\) is equal to

1 1
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Sets, Relation and Function

116946 The number of non-constant functions f from \(X\) \(=\{0,1,2\}\) to \(Y=\{1,2,3,4,5,6,7,8\}\) such that
\(f(i) \leq f(j)\) for \(i, j \in X\) and \(i\lt j\) is

1 120
2 92
3 56
4 112
Sets, Relation and Function

116947 If the function \(f:[a, b] \rightarrow\) defined by
\(f(x)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin x & 1 \\ 1+\cos x & 1 & 1\end{array}\right]\) is one-one and onto, then

1 \(\mathrm{a}=\frac{-\pi}{4}, \mathrm{~b}=\frac{\pi}{6}\)
2 \(\mathrm{a}=\frac{-\pi}{2}, \mathrm{~b}=\frac{\pi}{2}\)
3 \(\mathrm{a}=\frac{-\pi}{6}, \mathrm{~b}=\frac{\pi}{4}\)
4 \(\mathrm{a}=\pi, \mathrm{b}=\pi\)
Sets, Relation and Function

116948 If \(\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as \(\mathbf{f}(\mathbf{x})=\mathbf{x}-[\mathbf{x}]+3, \forall \mathbf{x}\) \(\pi R\), then \(f\) is

1 Not a function
2 A periodic function with period \(\pi\)
3 A periodic function with period 1
4 An invertible function
Sets, Relation and Function

116949 If \(5^x=(0.5)^y=1000\), then \(\frac{1}{x}-\frac{1}{y}\) is equal to

1 1
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)
Sets, Relation and Function

116946 The number of non-constant functions f from \(X\) \(=\{0,1,2\}\) to \(Y=\{1,2,3,4,5,6,7,8\}\) such that
\(f(i) \leq f(j)\) for \(i, j \in X\) and \(i\lt j\) is

1 120
2 92
3 56
4 112
Sets, Relation and Function

116947 If the function \(f:[a, b] \rightarrow\) defined by
\(f(x)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin x & 1 \\ 1+\cos x & 1 & 1\end{array}\right]\) is one-one and onto, then

1 \(\mathrm{a}=\frac{-\pi}{4}, \mathrm{~b}=\frac{\pi}{6}\)
2 \(\mathrm{a}=\frac{-\pi}{2}, \mathrm{~b}=\frac{\pi}{2}\)
3 \(\mathrm{a}=\frac{-\pi}{6}, \mathrm{~b}=\frac{\pi}{4}\)
4 \(\mathrm{a}=\pi, \mathrm{b}=\pi\)
Sets, Relation and Function

116948 If \(\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as \(\mathbf{f}(\mathbf{x})=\mathbf{x}-[\mathbf{x}]+3, \forall \mathbf{x}\) \(\pi R\), then \(f\) is

1 Not a function
2 A periodic function with period \(\pi\)
3 A periodic function with period 1
4 An invertible function
Sets, Relation and Function

116949 If \(5^x=(0.5)^y=1000\), then \(\frac{1}{x}-\frac{1}{y}\) is equal to

1 1
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{4}\)