116874
If \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) be the signum function and \(\mathrm{g}: \mathrm{R}\) \(\rightarrow R\) be the greatest integer function, then \(\sin \left\{\pi\left((\mathbf{f o g})\left(\frac{1}{2}\right)\right)\right\}\) is equal to
116876
The graph of the function \(y=\cos x \cos (x+2)-\cos ^2(x+1)\) is a
1 straight line passing through the point \(\left(0,-\sin ^2 1\right)\) and parallel to \(x\)-axis
2 straight line passing through the origin
3 parabola with vertex \(\left(0,-\sin ^2 1\right)\)
4 None of the above
Explanation:
A Given, \(\mathrm{y} =\cos \mathrm{x} \cos (\mathrm{x}+2)-\cos ^2(\mathrm{x}+1)\) \(=\cos (\mathrm{x}+1-1) \cos (\mathrm{x}+1+1)-\cos ^2(\mathrm{x}+1)\) \(=\cos ^2(\mathrm{x}+1)-\sin ^2 1-\cos ^2(\mathrm{x}+1)\) \(=-\sin ^2 1\) Which represent a straight line parallel to \(\mathrm{x}\)-axis with \(\mathrm{y}=-\sin ^2 1\) for all \(\mathrm{x}\) and so also for \(\mathrm{x}=\frac{\pi}{2} \text {. }\)
SCRA-2014
Sets, Relation and Function
116878
Let \(\mathbf{f}(\mathbf{x})=2 \mathbf{x}+\tan ^{-1} \mathbf{x}\) and \(\mathbf{g}(\mathbf{x})=\log _{\mathrm{e}}\) \(\left(\sqrt{1+x^2}+x\right), x \in[0,3]\). Then
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Sets, Relation and Function
116874
If \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) be the signum function and \(\mathrm{g}: \mathrm{R}\) \(\rightarrow R\) be the greatest integer function, then \(\sin \left\{\pi\left((\mathbf{f o g})\left(\frac{1}{2}\right)\right)\right\}\) is equal to
116876
The graph of the function \(y=\cos x \cos (x+2)-\cos ^2(x+1)\) is a
1 straight line passing through the point \(\left(0,-\sin ^2 1\right)\) and parallel to \(x\)-axis
2 straight line passing through the origin
3 parabola with vertex \(\left(0,-\sin ^2 1\right)\)
4 None of the above
Explanation:
A Given, \(\mathrm{y} =\cos \mathrm{x} \cos (\mathrm{x}+2)-\cos ^2(\mathrm{x}+1)\) \(=\cos (\mathrm{x}+1-1) \cos (\mathrm{x}+1+1)-\cos ^2(\mathrm{x}+1)\) \(=\cos ^2(\mathrm{x}+1)-\sin ^2 1-\cos ^2(\mathrm{x}+1)\) \(=-\sin ^2 1\) Which represent a straight line parallel to \(\mathrm{x}\)-axis with \(\mathrm{y}=-\sin ^2 1\) for all \(\mathrm{x}\) and so also for \(\mathrm{x}=\frac{\pi}{2} \text {. }\)
SCRA-2014
Sets, Relation and Function
116878
Let \(\mathbf{f}(\mathbf{x})=2 \mathbf{x}+\tan ^{-1} \mathbf{x}\) and \(\mathbf{g}(\mathbf{x})=\log _{\mathrm{e}}\) \(\left(\sqrt{1+x^2}+x\right), x \in[0,3]\). Then
116874
If \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) be the signum function and \(\mathrm{g}: \mathrm{R}\) \(\rightarrow R\) be the greatest integer function, then \(\sin \left\{\pi\left((\mathbf{f o g})\left(\frac{1}{2}\right)\right)\right\}\) is equal to
116876
The graph of the function \(y=\cos x \cos (x+2)-\cos ^2(x+1)\) is a
1 straight line passing through the point \(\left(0,-\sin ^2 1\right)\) and parallel to \(x\)-axis
2 straight line passing through the origin
3 parabola with vertex \(\left(0,-\sin ^2 1\right)\)
4 None of the above
Explanation:
A Given, \(\mathrm{y} =\cos \mathrm{x} \cos (\mathrm{x}+2)-\cos ^2(\mathrm{x}+1)\) \(=\cos (\mathrm{x}+1-1) \cos (\mathrm{x}+1+1)-\cos ^2(\mathrm{x}+1)\) \(=\cos ^2(\mathrm{x}+1)-\sin ^2 1-\cos ^2(\mathrm{x}+1)\) \(=-\sin ^2 1\) Which represent a straight line parallel to \(\mathrm{x}\)-axis with \(\mathrm{y}=-\sin ^2 1\) for all \(\mathrm{x}\) and so also for \(\mathrm{x}=\frac{\pi}{2} \text {. }\)
SCRA-2014
Sets, Relation and Function
116878
Let \(\mathbf{f}(\mathbf{x})=2 \mathbf{x}+\tan ^{-1} \mathbf{x}\) and \(\mathbf{g}(\mathbf{x})=\log _{\mathrm{e}}\) \(\left(\sqrt{1+x^2}+x\right), x \in[0,3]\). Then
116874
If \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) be the signum function and \(\mathrm{g}: \mathrm{R}\) \(\rightarrow R\) be the greatest integer function, then \(\sin \left\{\pi\left((\mathbf{f o g})\left(\frac{1}{2}\right)\right)\right\}\) is equal to
116876
The graph of the function \(y=\cos x \cos (x+2)-\cos ^2(x+1)\) is a
1 straight line passing through the point \(\left(0,-\sin ^2 1\right)\) and parallel to \(x\)-axis
2 straight line passing through the origin
3 parabola with vertex \(\left(0,-\sin ^2 1\right)\)
4 None of the above
Explanation:
A Given, \(\mathrm{y} =\cos \mathrm{x} \cos (\mathrm{x}+2)-\cos ^2(\mathrm{x}+1)\) \(=\cos (\mathrm{x}+1-1) \cos (\mathrm{x}+1+1)-\cos ^2(\mathrm{x}+1)\) \(=\cos ^2(\mathrm{x}+1)-\sin ^2 1-\cos ^2(\mathrm{x}+1)\) \(=-\sin ^2 1\) Which represent a straight line parallel to \(\mathrm{x}\)-axis with \(\mathrm{y}=-\sin ^2 1\) for all \(\mathrm{x}\) and so also for \(\mathrm{x}=\frac{\pi}{2} \text {. }\)
SCRA-2014
Sets, Relation and Function
116878
Let \(\mathbf{f}(\mathbf{x})=2 \mathbf{x}+\tan ^{-1} \mathbf{x}\) and \(\mathbf{g}(\mathbf{x})=\log _{\mathrm{e}}\) \(\left(\sqrt{1+x^2}+x\right), x \in[0,3]\). Then