Properties of Functions and Graphs
Sets, Relation and Function

116870 If \(A=\{-2,-1,0,1,2\}\) and \(f: A \rightarrow Z, f(x)=x^2-\) \(2 x-3\), then what is the pre-image (s) of -3 ?

1 0 only
2 2 only
3 0,2
4 \(\Phi\)
Sets, Relation and Function

116872 If \(\log _{10^4} x=y\), then \(\log _{10^8} x^4\) is equal to -

1 \(\frac{2}{3} \mathrm{y}\)
2 \(3 y\)
3 \(4 \mathrm{y}\)
4 \(2 y\)
Sets, Relation and Function

116873 If for all \(x, y \in N\), there exists a function \(f(x)\) satisfying \(f(x+y)=f(x) \times f(y) \quad\) such that \(f(1)=3\) and \(\sum_{x=1}^n f(x)=120\), then value of \(n\) will be

1 4
2 5
3 6
4 None of these
Sets, Relation and Function

116893 Let \(\mathbf{f}=\{(0,-1),(-1,-3),(2,3),(3,5)\}\) be a function from \(Z\) to \(Z\) defined by \(f(x)=a x+b\). Then

1 \(\mathrm{a}=1, \mathrm{~b}=-2\)
2 \(\mathrm{a}=2, \mathrm{~b}=1\)
3 \(a=2, b=-1\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Sets, Relation and Function

116870 If \(A=\{-2,-1,0,1,2\}\) and \(f: A \rightarrow Z, f(x)=x^2-\) \(2 x-3\), then what is the pre-image (s) of -3 ?

1 0 only
2 2 only
3 0,2
4 \(\Phi\)
Sets, Relation and Function

116872 If \(\log _{10^4} x=y\), then \(\log _{10^8} x^4\) is equal to -

1 \(\frac{2}{3} \mathrm{y}\)
2 \(3 y\)
3 \(4 \mathrm{y}\)
4 \(2 y\)
Sets, Relation and Function

116873 If for all \(x, y \in N\), there exists a function \(f(x)\) satisfying \(f(x+y)=f(x) \times f(y) \quad\) such that \(f(1)=3\) and \(\sum_{x=1}^n f(x)=120\), then value of \(n\) will be

1 4
2 5
3 6
4 None of these
Sets, Relation and Function

116893 Let \(\mathbf{f}=\{(0,-1),(-1,-3),(2,3),(3,5)\}\) be a function from \(Z\) to \(Z\) defined by \(f(x)=a x+b\). Then

1 \(\mathrm{a}=1, \mathrm{~b}=-2\)
2 \(\mathrm{a}=2, \mathrm{~b}=1\)
3 \(a=2, b=-1\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Sets, Relation and Function

116870 If \(A=\{-2,-1,0,1,2\}\) and \(f: A \rightarrow Z, f(x)=x^2-\) \(2 x-3\), then what is the pre-image (s) of -3 ?

1 0 only
2 2 only
3 0,2
4 \(\Phi\)
Sets, Relation and Function

116872 If \(\log _{10^4} x=y\), then \(\log _{10^8} x^4\) is equal to -

1 \(\frac{2}{3} \mathrm{y}\)
2 \(3 y\)
3 \(4 \mathrm{y}\)
4 \(2 y\)
Sets, Relation and Function

116873 If for all \(x, y \in N\), there exists a function \(f(x)\) satisfying \(f(x+y)=f(x) \times f(y) \quad\) such that \(f(1)=3\) and \(\sum_{x=1}^n f(x)=120\), then value of \(n\) will be

1 4
2 5
3 6
4 None of these
Sets, Relation and Function

116893 Let \(\mathbf{f}=\{(0,-1),(-1,-3),(2,3),(3,5)\}\) be a function from \(Z\) to \(Z\) defined by \(f(x)=a x+b\). Then

1 \(\mathrm{a}=1, \mathrm{~b}=-2\)
2 \(\mathrm{a}=2, \mathrm{~b}=1\)
3 \(a=2, b=-1\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Sets, Relation and Function

116870 If \(A=\{-2,-1,0,1,2\}\) and \(f: A \rightarrow Z, f(x)=x^2-\) \(2 x-3\), then what is the pre-image (s) of -3 ?

1 0 only
2 2 only
3 0,2
4 \(\Phi\)
Sets, Relation and Function

116872 If \(\log _{10^4} x=y\), then \(\log _{10^8} x^4\) is equal to -

1 \(\frac{2}{3} \mathrm{y}\)
2 \(3 y\)
3 \(4 \mathrm{y}\)
4 \(2 y\)
Sets, Relation and Function

116873 If for all \(x, y \in N\), there exists a function \(f(x)\) satisfying \(f(x+y)=f(x) \times f(y) \quad\) such that \(f(1)=3\) and \(\sum_{x=1}^n f(x)=120\), then value of \(n\) will be

1 4
2 5
3 6
4 None of these
Sets, Relation and Function

116893 Let \(\mathbf{f}=\{(0,-1),(-1,-3),(2,3),(3,5)\}\) be a function from \(Z\) to \(Z\) defined by \(f(x)=a x+b\). Then

1 \(\mathrm{a}=1, \mathrm{~b}=-2\)
2 \(\mathrm{a}=2, \mathrm{~b}=1\)
3 \(a=2, b=-1\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)