Sum of Special Series: Σn, Σn², and Σn³
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118897 If sum of the series \(\sum_{n=0}^{\infty} r^n=S\), for \(|r|\lt 1\), then sum of the series \(\sum_{n=0}^{\infty} r^{2 n}\), is

1 \(\mathrm{S}^2\)
2 \(\frac{S^2}{2 S+1}\)
3 \(\frac{2 \mathrm{~S}}{\mathrm{~S}^2-1}\)
4 \(\frac{\mathrm{S}^2}{2 \mathrm{~S}-1}\)
Sequence and Series

118898 Find the sum of the series
\(\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\frac{1}{6 \cdot 7}+\ldots \ldots . .\)

1 \(\log \frac{\mathrm{e}}{2}\)
2 \(\log \frac{\mathrm{e}}{4}\)
3 \(\log \frac{2}{3}\)
4 \(\log \frac{2}{4}\)
Sequence and Series

118899 The sum \(\sum_{n=1}^{21} \frac{3}{(4 n-1)(4 n+3)}\) is equal to

1 \(\frac{7}{87}\)
2 \(\frac{7}{29}\)
3 \(\frac{14}{87}\)
4 \(\frac{21}{29}\)
Sequence and Series

118900 If the sum of first \(n\) natural numbers is \(\mathbf{1 / 5}\) times the sum of their squares, then \(n=\)

1 7
2 8
3 6
4 5
Sequence and Series

118897 If sum of the series \(\sum_{n=0}^{\infty} r^n=S\), for \(|r|\lt 1\), then sum of the series \(\sum_{n=0}^{\infty} r^{2 n}\), is

1 \(\mathrm{S}^2\)
2 \(\frac{S^2}{2 S+1}\)
3 \(\frac{2 \mathrm{~S}}{\mathrm{~S}^2-1}\)
4 \(\frac{\mathrm{S}^2}{2 \mathrm{~S}-1}\)
Sequence and Series

118898 Find the sum of the series
\(\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\frac{1}{6 \cdot 7}+\ldots \ldots . .\)

1 \(\log \frac{\mathrm{e}}{2}\)
2 \(\log \frac{\mathrm{e}}{4}\)
3 \(\log \frac{2}{3}\)
4 \(\log \frac{2}{4}\)
Sequence and Series

118899 The sum \(\sum_{n=1}^{21} \frac{3}{(4 n-1)(4 n+3)}\) is equal to

1 \(\frac{7}{87}\)
2 \(\frac{7}{29}\)
3 \(\frac{14}{87}\)
4 \(\frac{21}{29}\)
Sequence and Series

118900 If the sum of first \(n\) natural numbers is \(\mathbf{1 / 5}\) times the sum of their squares, then \(n=\)

1 7
2 8
3 6
4 5
Sequence and Series

118897 If sum of the series \(\sum_{n=0}^{\infty} r^n=S\), for \(|r|\lt 1\), then sum of the series \(\sum_{n=0}^{\infty} r^{2 n}\), is

1 \(\mathrm{S}^2\)
2 \(\frac{S^2}{2 S+1}\)
3 \(\frac{2 \mathrm{~S}}{\mathrm{~S}^2-1}\)
4 \(\frac{\mathrm{S}^2}{2 \mathrm{~S}-1}\)
Sequence and Series

118898 Find the sum of the series
\(\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\frac{1}{6 \cdot 7}+\ldots \ldots . .\)

1 \(\log \frac{\mathrm{e}}{2}\)
2 \(\log \frac{\mathrm{e}}{4}\)
3 \(\log \frac{2}{3}\)
4 \(\log \frac{2}{4}\)
Sequence and Series

118899 The sum \(\sum_{n=1}^{21} \frac{3}{(4 n-1)(4 n+3)}\) is equal to

1 \(\frac{7}{87}\)
2 \(\frac{7}{29}\)
3 \(\frac{14}{87}\)
4 \(\frac{21}{29}\)
Sequence and Series

118900 If the sum of first \(n\) natural numbers is \(\mathbf{1 / 5}\) times the sum of their squares, then \(n=\)

1 7
2 8
3 6
4 5
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118897 If sum of the series \(\sum_{n=0}^{\infty} r^n=S\), for \(|r|\lt 1\), then sum of the series \(\sum_{n=0}^{\infty} r^{2 n}\), is

1 \(\mathrm{S}^2\)
2 \(\frac{S^2}{2 S+1}\)
3 \(\frac{2 \mathrm{~S}}{\mathrm{~S}^2-1}\)
4 \(\frac{\mathrm{S}^2}{2 \mathrm{~S}-1}\)
Sequence and Series

118898 Find the sum of the series
\(\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\frac{1}{6 \cdot 7}+\ldots \ldots . .\)

1 \(\log \frac{\mathrm{e}}{2}\)
2 \(\log \frac{\mathrm{e}}{4}\)
3 \(\log \frac{2}{3}\)
4 \(\log \frac{2}{4}\)
Sequence and Series

118899 The sum \(\sum_{n=1}^{21} \frac{3}{(4 n-1)(4 n+3)}\) is equal to

1 \(\frac{7}{87}\)
2 \(\frac{7}{29}\)
3 \(\frac{14}{87}\)
4 \(\frac{21}{29}\)
Sequence and Series

118900 If the sum of first \(n\) natural numbers is \(\mathbf{1 / 5}\) times the sum of their squares, then \(n=\)

1 7
2 8
3 6
4 5