Sum of Special Series: Σn, Σn², and Σn³
Sequence and Series

118901 The value of the sum
\(1.2 \cdot 3+2.3 .4+3.4 \cdot 5+\ldots\). upto \(n\) terms is equal to

1 \(\frac{1}{6} n^2\left(2 n^2+1\right)\)
2 \(\frac{1}{6}\left(n^2-1\right)(2 n-1)(2 n+3)\)
3 \(\frac{1}{8}\left(n^2+1\right)\left(n^2+5\right)\)
4 \(\frac{1}{4} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)\)
Sequence and Series

118902 Sum of the first 100 terms of the series \(1+3+7\) \(+\mathbf{1 5}+\mathbf{3 1}+\ldots .\). is

1 \(2^{100}-102\)
2 \(2^{101}-102\)
3 \(2^{102}-103\)
4 \(2^{102}-104\)
Sequence and Series

118903 If \(\frac{1}{2 \times 4}+\frac{1}{4 \times 6}+\frac{1}{6 \times 8}+\ldots . .(\mathrm{n}\) terms \()=\frac{\mathrm{kn}}{\mathrm{n}+1}\), then \(\mathrm{k}\) is equal to

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{8}\)
Sequence and Series

118904 For all \(n \in \mathbb{N}\), if \(\mathbf{1}^2+2^2+3^2+\ldots \ldots .+n^2>x\), then \(\mathbf{x}=\)

1 \(\frac{\mathrm{n}^3}{3}\)
2 \(\frac{\mathrm{n}^3}{2}\)
3 \(\mathrm{n}^3\)
4 \(\frac{n^4}{4}\)
Sequence and Series

118905 If \(f: R \rightarrow R\) is defined as \(f(x+y)=f(x)+f(y)\), \(\forall x, y \in R\) and \(f(1)=10\), then, \(\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{f}(\mathrm{r}))^2=\)

1 \(\frac{7}{2} \mathrm{n}(\mathrm{n}+1)\)
2 \(5 \mathrm{n}(\mathrm{n}+1)\)
3 \(\frac{50}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\)
4 \(\frac{100}{4} n^2(n+1)^2\)
Sequence and Series

118901 The value of the sum
\(1.2 \cdot 3+2.3 .4+3.4 \cdot 5+\ldots\). upto \(n\) terms is equal to

1 \(\frac{1}{6} n^2\left(2 n^2+1\right)\)
2 \(\frac{1}{6}\left(n^2-1\right)(2 n-1)(2 n+3)\)
3 \(\frac{1}{8}\left(n^2+1\right)\left(n^2+5\right)\)
4 \(\frac{1}{4} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)\)
Sequence and Series

118902 Sum of the first 100 terms of the series \(1+3+7\) \(+\mathbf{1 5}+\mathbf{3 1}+\ldots .\). is

1 \(2^{100}-102\)
2 \(2^{101}-102\)
3 \(2^{102}-103\)
4 \(2^{102}-104\)
Sequence and Series

118903 If \(\frac{1}{2 \times 4}+\frac{1}{4 \times 6}+\frac{1}{6 \times 8}+\ldots . .(\mathrm{n}\) terms \()=\frac{\mathrm{kn}}{\mathrm{n}+1}\), then \(\mathrm{k}\) is equal to

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{8}\)
Sequence and Series

118904 For all \(n \in \mathbb{N}\), if \(\mathbf{1}^2+2^2+3^2+\ldots \ldots .+n^2>x\), then \(\mathbf{x}=\)

1 \(\frac{\mathrm{n}^3}{3}\)
2 \(\frac{\mathrm{n}^3}{2}\)
3 \(\mathrm{n}^3\)
4 \(\frac{n^4}{4}\)
Sequence and Series

118905 If \(f: R \rightarrow R\) is defined as \(f(x+y)=f(x)+f(y)\), \(\forall x, y \in R\) and \(f(1)=10\), then, \(\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{f}(\mathrm{r}))^2=\)

1 \(\frac{7}{2} \mathrm{n}(\mathrm{n}+1)\)
2 \(5 \mathrm{n}(\mathrm{n}+1)\)
3 \(\frac{50}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\)
4 \(\frac{100}{4} n^2(n+1)^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118901 The value of the sum
\(1.2 \cdot 3+2.3 .4+3.4 \cdot 5+\ldots\). upto \(n\) terms is equal to

1 \(\frac{1}{6} n^2\left(2 n^2+1\right)\)
2 \(\frac{1}{6}\left(n^2-1\right)(2 n-1)(2 n+3)\)
3 \(\frac{1}{8}\left(n^2+1\right)\left(n^2+5\right)\)
4 \(\frac{1}{4} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)\)
Sequence and Series

118902 Sum of the first 100 terms of the series \(1+3+7\) \(+\mathbf{1 5}+\mathbf{3 1}+\ldots .\). is

1 \(2^{100}-102\)
2 \(2^{101}-102\)
3 \(2^{102}-103\)
4 \(2^{102}-104\)
Sequence and Series

118903 If \(\frac{1}{2 \times 4}+\frac{1}{4 \times 6}+\frac{1}{6 \times 8}+\ldots . .(\mathrm{n}\) terms \()=\frac{\mathrm{kn}}{\mathrm{n}+1}\), then \(\mathrm{k}\) is equal to

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{8}\)
Sequence and Series

118904 For all \(n \in \mathbb{N}\), if \(\mathbf{1}^2+2^2+3^2+\ldots \ldots .+n^2>x\), then \(\mathbf{x}=\)

1 \(\frac{\mathrm{n}^3}{3}\)
2 \(\frac{\mathrm{n}^3}{2}\)
3 \(\mathrm{n}^3\)
4 \(\frac{n^4}{4}\)
Sequence and Series

118905 If \(f: R \rightarrow R\) is defined as \(f(x+y)=f(x)+f(y)\), \(\forall x, y \in R\) and \(f(1)=10\), then, \(\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{f}(\mathrm{r}))^2=\)

1 \(\frac{7}{2} \mathrm{n}(\mathrm{n}+1)\)
2 \(5 \mathrm{n}(\mathrm{n}+1)\)
3 \(\frac{50}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\)
4 \(\frac{100}{4} n^2(n+1)^2\)
Sequence and Series

118901 The value of the sum
\(1.2 \cdot 3+2.3 .4+3.4 \cdot 5+\ldots\). upto \(n\) terms is equal to

1 \(\frac{1}{6} n^2\left(2 n^2+1\right)\)
2 \(\frac{1}{6}\left(n^2-1\right)(2 n-1)(2 n+3)\)
3 \(\frac{1}{8}\left(n^2+1\right)\left(n^2+5\right)\)
4 \(\frac{1}{4} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)\)
Sequence and Series

118902 Sum of the first 100 terms of the series \(1+3+7\) \(+\mathbf{1 5}+\mathbf{3 1}+\ldots .\). is

1 \(2^{100}-102\)
2 \(2^{101}-102\)
3 \(2^{102}-103\)
4 \(2^{102}-104\)
Sequence and Series

118903 If \(\frac{1}{2 \times 4}+\frac{1}{4 \times 6}+\frac{1}{6 \times 8}+\ldots . .(\mathrm{n}\) terms \()=\frac{\mathrm{kn}}{\mathrm{n}+1}\), then \(\mathrm{k}\) is equal to

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{8}\)
Sequence and Series

118904 For all \(n \in \mathbb{N}\), if \(\mathbf{1}^2+2^2+3^2+\ldots \ldots .+n^2>x\), then \(\mathbf{x}=\)

1 \(\frac{\mathrm{n}^3}{3}\)
2 \(\frac{\mathrm{n}^3}{2}\)
3 \(\mathrm{n}^3\)
4 \(\frac{n^4}{4}\)
Sequence and Series

118905 If \(f: R \rightarrow R\) is defined as \(f(x+y)=f(x)+f(y)\), \(\forall x, y \in R\) and \(f(1)=10\), then, \(\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{f}(\mathrm{r}))^2=\)

1 \(\frac{7}{2} \mathrm{n}(\mathrm{n}+1)\)
2 \(5 \mathrm{n}(\mathrm{n}+1)\)
3 \(\frac{50}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\)
4 \(\frac{100}{4} n^2(n+1)^2\)
Sequence and Series

118901 The value of the sum
\(1.2 \cdot 3+2.3 .4+3.4 \cdot 5+\ldots\). upto \(n\) terms is equal to

1 \(\frac{1}{6} n^2\left(2 n^2+1\right)\)
2 \(\frac{1}{6}\left(n^2-1\right)(2 n-1)(2 n+3)\)
3 \(\frac{1}{8}\left(n^2+1\right)\left(n^2+5\right)\)
4 \(\frac{1}{4} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)\)
Sequence and Series

118902 Sum of the first 100 terms of the series \(1+3+7\) \(+\mathbf{1 5}+\mathbf{3 1}+\ldots .\). is

1 \(2^{100}-102\)
2 \(2^{101}-102\)
3 \(2^{102}-103\)
4 \(2^{102}-104\)
Sequence and Series

118903 If \(\frac{1}{2 \times 4}+\frac{1}{4 \times 6}+\frac{1}{6 \times 8}+\ldots . .(\mathrm{n}\) terms \()=\frac{\mathrm{kn}}{\mathrm{n}+1}\), then \(\mathrm{k}\) is equal to

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{8}\)
Sequence and Series

118904 For all \(n \in \mathbb{N}\), if \(\mathbf{1}^2+2^2+3^2+\ldots \ldots .+n^2>x\), then \(\mathbf{x}=\)

1 \(\frac{\mathrm{n}^3}{3}\)
2 \(\frac{\mathrm{n}^3}{2}\)
3 \(\mathrm{n}^3\)
4 \(\frac{n^4}{4}\)
Sequence and Series

118905 If \(f: R \rightarrow R\) is defined as \(f(x+y)=f(x)+f(y)\), \(\forall x, y \in R\) and \(f(1)=10\), then, \(\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{f}(\mathrm{r}))^2=\)

1 \(\frac{7}{2} \mathrm{n}(\mathrm{n}+1)\)
2 \(5 \mathrm{n}(\mathrm{n}+1)\)
3 \(\frac{50}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\)
4 \(\frac{100}{4} n^2(n+1)^2\)