Geometric Progression
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118683 If \(a>0, b>0, c>0\) and \(a, b, c\), are distinct, then \((a+b)(b+c)(c+a)\) is greater than

1 \(2(a+b+c)\)
2 \(3(a+b+c)\)
3 \(6 \mathrm{abc}\)
4 \(8 \mathrm{abc}\)
Sequence and Series

118684 If \(a_1, a_2\), and \(a_3\) be any positive real numbers, then which of the following statement is true?

1 \(3 a_1 a_2 a_3 \leq a_1^3+a_2^3+a_3^3\)
2 \(\frac{\mathrm{a}_1}{\mathrm{a}_2}+\frac{\mathrm{a}_2}{\mathrm{a}_3}+\frac{\mathrm{a}_3}{\mathrm{a}_1} \geq 3\)
3 \(\left(\mathrm{a}_1+\mathrm{a}_2+\mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right) \geq 9\)
4 \(\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right)^3 \geq 27\)
Sequence and Series

118685 The harmonic mean of two numbers is 4 and the arithmetic and geometric mean satisfy the relation \(2 \mathbf{A}+\mathbf{G}^{\mathbf{2}}=\mathbf{2 7}\), the numbers are

1 6,3
2 5,4
3 \(5,-2.5\)
4 \(-3,1\)
Sequence and Series

118686 Let \(a_1, a_2, . ., a_{10}\), be in AP and \(h_1, h_2, \ldots ., h_{10}\) be in HP. If \(a_1=h_1=2\) and \(a_{10}=h_{10}=3\). Then, \(a_4 h_7\) is

1 2
2 3
3 5
4 6
Sequence and Series

118683 If \(a>0, b>0, c>0\) and \(a, b, c\), are distinct, then \((a+b)(b+c)(c+a)\) is greater than

1 \(2(a+b+c)\)
2 \(3(a+b+c)\)
3 \(6 \mathrm{abc}\)
4 \(8 \mathrm{abc}\)
Sequence and Series

118684 If \(a_1, a_2\), and \(a_3\) be any positive real numbers, then which of the following statement is true?

1 \(3 a_1 a_2 a_3 \leq a_1^3+a_2^3+a_3^3\)
2 \(\frac{\mathrm{a}_1}{\mathrm{a}_2}+\frac{\mathrm{a}_2}{\mathrm{a}_3}+\frac{\mathrm{a}_3}{\mathrm{a}_1} \geq 3\)
3 \(\left(\mathrm{a}_1+\mathrm{a}_2+\mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right) \geq 9\)
4 \(\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right)^3 \geq 27\)
Sequence and Series

118685 The harmonic mean of two numbers is 4 and the arithmetic and geometric mean satisfy the relation \(2 \mathbf{A}+\mathbf{G}^{\mathbf{2}}=\mathbf{2 7}\), the numbers are

1 6,3
2 5,4
3 \(5,-2.5\)
4 \(-3,1\)
Sequence and Series

118686 Let \(a_1, a_2, . ., a_{10}\), be in AP and \(h_1, h_2, \ldots ., h_{10}\) be in HP. If \(a_1=h_1=2\) and \(a_{10}=h_{10}=3\). Then, \(a_4 h_7\) is

1 2
2 3
3 5
4 6
Sequence and Series

118683 If \(a>0, b>0, c>0\) and \(a, b, c\), are distinct, then \((a+b)(b+c)(c+a)\) is greater than

1 \(2(a+b+c)\)
2 \(3(a+b+c)\)
3 \(6 \mathrm{abc}\)
4 \(8 \mathrm{abc}\)
Sequence and Series

118684 If \(a_1, a_2\), and \(a_3\) be any positive real numbers, then which of the following statement is true?

1 \(3 a_1 a_2 a_3 \leq a_1^3+a_2^3+a_3^3\)
2 \(\frac{\mathrm{a}_1}{\mathrm{a}_2}+\frac{\mathrm{a}_2}{\mathrm{a}_3}+\frac{\mathrm{a}_3}{\mathrm{a}_1} \geq 3\)
3 \(\left(\mathrm{a}_1+\mathrm{a}_2+\mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right) \geq 9\)
4 \(\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right)^3 \geq 27\)
Sequence and Series

118685 The harmonic mean of two numbers is 4 and the arithmetic and geometric mean satisfy the relation \(2 \mathbf{A}+\mathbf{G}^{\mathbf{2}}=\mathbf{2 7}\), the numbers are

1 6,3
2 5,4
3 \(5,-2.5\)
4 \(-3,1\)
Sequence and Series

118686 Let \(a_1, a_2, . ., a_{10}\), be in AP and \(h_1, h_2, \ldots ., h_{10}\) be in HP. If \(a_1=h_1=2\) and \(a_{10}=h_{10}=3\). Then, \(a_4 h_7\) is

1 2
2 3
3 5
4 6
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118683 If \(a>0, b>0, c>0\) and \(a, b, c\), are distinct, then \((a+b)(b+c)(c+a)\) is greater than

1 \(2(a+b+c)\)
2 \(3(a+b+c)\)
3 \(6 \mathrm{abc}\)
4 \(8 \mathrm{abc}\)
Sequence and Series

118684 If \(a_1, a_2\), and \(a_3\) be any positive real numbers, then which of the following statement is true?

1 \(3 a_1 a_2 a_3 \leq a_1^3+a_2^3+a_3^3\)
2 \(\frac{\mathrm{a}_1}{\mathrm{a}_2}+\frac{\mathrm{a}_2}{\mathrm{a}_3}+\frac{\mathrm{a}_3}{\mathrm{a}_1} \geq 3\)
3 \(\left(\mathrm{a}_1+\mathrm{a}_2+\mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right) \geq 9\)
4 \(\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3\right)\left(\frac{1}{\mathrm{a}_1}+\frac{1}{\mathrm{a}_2}+\frac{1}{\mathrm{a}_3}\right)^3 \geq 27\)
Sequence and Series

118685 The harmonic mean of two numbers is 4 and the arithmetic and geometric mean satisfy the relation \(2 \mathbf{A}+\mathbf{G}^{\mathbf{2}}=\mathbf{2 7}\), the numbers are

1 6,3
2 5,4
3 \(5,-2.5\)
4 \(-3,1\)
Sequence and Series

118686 Let \(a_1, a_2, . ., a_{10}\), be in AP and \(h_1, h_2, \ldots ., h_{10}\) be in HP. If \(a_1=h_1=2\) and \(a_{10}=h_{10}=3\). Then, \(a_4 h_7\) is

1 2
2 3
3 5
4 6