Geometric Progression
Sequence and Series

118687 If \(H\) is harmonic mean between \(P\) and \(Q\). Then the value of \(\frac{H}{P}+\frac{H}{Q}\) is

1 2
2 \(\frac{P Q}{P+Q}\)
3 \(\frac{\mathrm{P}+\mathrm{Q}}{\mathrm{PQ}}\)
4 None of these
Sequence and Series

118688 If positive numbers \(a, b, c\) are in \(H P\) and \(c>a\), then \(\log (a+c)+\log (a-2 b+c)\) is equal to

1 \(2 \log (c-b)\)
2 \(2 \log (a+c)\)
3 \(2 \log (\mathrm{c}-\mathrm{a})\)
4 \(2 \log (a-c)\)
Sequence and Series

118689 If the AM of two numbers be \(A\) and GM be G, then the numbers will be

1 \(\mathrm{A} \pm\left(\mathrm{A}^2-\mathrm{G}^2\right)\)
2 \(\sqrt{\mathrm{A}} \pm \sqrt{\mathrm{A}^2-\mathrm{G}^2}\)
3 \(A \pm \sqrt{(A+G)(A-G)}\)
4 \(\frac{A \pm \sqrt{(A+G)(A-G)}}{2}\)
Sequence and Series

118690 If arithmetic mean of two positive numbers is \(A\), their geometric mean is \(G\) and harmonic mean is \(H\), then \(H\) is equal to:

1 \(G^2 / A\)
2 \(\mathrm{A}^2 / \mathrm{G}^2\)
3 \(\mathrm{A} / \mathrm{G}^2\)
4 \(\mathrm{G} / \mathrm{A}^2\)
Sequence and Series

118687 If \(H\) is harmonic mean between \(P\) and \(Q\). Then the value of \(\frac{H}{P}+\frac{H}{Q}\) is

1 2
2 \(\frac{P Q}{P+Q}\)
3 \(\frac{\mathrm{P}+\mathrm{Q}}{\mathrm{PQ}}\)
4 None of these
Sequence and Series

118688 If positive numbers \(a, b, c\) are in \(H P\) and \(c>a\), then \(\log (a+c)+\log (a-2 b+c)\) is equal to

1 \(2 \log (c-b)\)
2 \(2 \log (a+c)\)
3 \(2 \log (\mathrm{c}-\mathrm{a})\)
4 \(2 \log (a-c)\)
Sequence and Series

118689 If the AM of two numbers be \(A\) and GM be G, then the numbers will be

1 \(\mathrm{A} \pm\left(\mathrm{A}^2-\mathrm{G}^2\right)\)
2 \(\sqrt{\mathrm{A}} \pm \sqrt{\mathrm{A}^2-\mathrm{G}^2}\)
3 \(A \pm \sqrt{(A+G)(A-G)}\)
4 \(\frac{A \pm \sqrt{(A+G)(A-G)}}{2}\)
Sequence and Series

118690 If arithmetic mean of two positive numbers is \(A\), their geometric mean is \(G\) and harmonic mean is \(H\), then \(H\) is equal to:

1 \(G^2 / A\)
2 \(\mathrm{A}^2 / \mathrm{G}^2\)
3 \(\mathrm{A} / \mathrm{G}^2\)
4 \(\mathrm{G} / \mathrm{A}^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118687 If \(H\) is harmonic mean between \(P\) and \(Q\). Then the value of \(\frac{H}{P}+\frac{H}{Q}\) is

1 2
2 \(\frac{P Q}{P+Q}\)
3 \(\frac{\mathrm{P}+\mathrm{Q}}{\mathrm{PQ}}\)
4 None of these
Sequence and Series

118688 If positive numbers \(a, b, c\) are in \(H P\) and \(c>a\), then \(\log (a+c)+\log (a-2 b+c)\) is equal to

1 \(2 \log (c-b)\)
2 \(2 \log (a+c)\)
3 \(2 \log (\mathrm{c}-\mathrm{a})\)
4 \(2 \log (a-c)\)
Sequence and Series

118689 If the AM of two numbers be \(A\) and GM be G, then the numbers will be

1 \(\mathrm{A} \pm\left(\mathrm{A}^2-\mathrm{G}^2\right)\)
2 \(\sqrt{\mathrm{A}} \pm \sqrt{\mathrm{A}^2-\mathrm{G}^2}\)
3 \(A \pm \sqrt{(A+G)(A-G)}\)
4 \(\frac{A \pm \sqrt{(A+G)(A-G)}}{2}\)
Sequence and Series

118690 If arithmetic mean of two positive numbers is \(A\), their geometric mean is \(G\) and harmonic mean is \(H\), then \(H\) is equal to:

1 \(G^2 / A\)
2 \(\mathrm{A}^2 / \mathrm{G}^2\)
3 \(\mathrm{A} / \mathrm{G}^2\)
4 \(\mathrm{G} / \mathrm{A}^2\)
Sequence and Series

118687 If \(H\) is harmonic mean between \(P\) and \(Q\). Then the value of \(\frac{H}{P}+\frac{H}{Q}\) is

1 2
2 \(\frac{P Q}{P+Q}\)
3 \(\frac{\mathrm{P}+\mathrm{Q}}{\mathrm{PQ}}\)
4 None of these
Sequence and Series

118688 If positive numbers \(a, b, c\) are in \(H P\) and \(c>a\), then \(\log (a+c)+\log (a-2 b+c)\) is equal to

1 \(2 \log (c-b)\)
2 \(2 \log (a+c)\)
3 \(2 \log (\mathrm{c}-\mathrm{a})\)
4 \(2 \log (a-c)\)
Sequence and Series

118689 If the AM of two numbers be \(A\) and GM be G, then the numbers will be

1 \(\mathrm{A} \pm\left(\mathrm{A}^2-\mathrm{G}^2\right)\)
2 \(\sqrt{\mathrm{A}} \pm \sqrt{\mathrm{A}^2-\mathrm{G}^2}\)
3 \(A \pm \sqrt{(A+G)(A-G)}\)
4 \(\frac{A \pm \sqrt{(A+G)(A-G)}}{2}\)
Sequence and Series

118690 If arithmetic mean of two positive numbers is \(A\), their geometric mean is \(G\) and harmonic mean is \(H\), then \(H\) is equal to:

1 \(G^2 / A\)
2 \(\mathrm{A}^2 / \mathrm{G}^2\)
3 \(\mathrm{A} / \mathrm{G}^2\)
4 \(\mathrm{G} / \mathrm{A}^2\)