119311 If 597 is divided by 52 , the remainder obtained is
B 597=596×5=(54)24×5=(625)24×5∴59752=(625)24×552If we divide, 625 by 52 ,Then remainder is 1∴ remainder when (625)24×5 divided by 52 is 5 .
119312 The number of diagonals in a hexagon is
B GivenSide of Hexagon, n=6 Number of diagonals =n(n−3)2=6(6−3)2=3×3=9
119313 The sumS=1/9!+1/3!7!+1/5!5!+1/7!3!+1/9 ! is equal to
B SumS=19!+13!7!+15!5!+17!3!+19!S=110![10!9!+10!3!7!+10!5!5!+10!7!3!+10!9!]=110![10C1+10C3+10C5+10C7+10C9]=110!(210−1)=2910!
119316 The value of 12!+23!+…+9991000! is equal to
A Given=12!+23!+……+9991000!=2−12!+3−13!+………+1000−11000!=22!−12!+33!−13!+………+10001000!−11000!=1−12!+12!−13!+……+1999−11000∵nn!=1(n−1)!]=1−11000!=1000!−11000!
119314 If n is any positive integer, the 12n(2nPn) is equal to
C Positive integer=12n(2nPn)=2n(2n−1)(2n−2)(2n−3)….3×2×12n×n!=2n×n(n−1)(n−2)….3×2×2×1[1×3×5(2n−1)]2nn!=1×3×5……(2n−1)