119272
If
\(\sum_{\mathrm{k}=1}^{31}\left({ }^{31} \mathbf{C}_{\mathrm{k}}\right)\left({ }^{31} \mathbf{C}_{\mathrm{k}-1}\right)-\sum_{\mathrm{k}=1}^{30}{ }^{30} \mathrm{C}_{\mathrm{k}}\left({ }^{30} \mathbf{C}_{\mathrm{k}-1}\right)=\frac{\boldsymbol{\alpha}(60 !)}{(30 !)(31 !)},\)
where \(\alpha \in R\), then the value of \(16 \alpha\) is equal to
119272
If
\(\sum_{\mathrm{k}=1}^{31}\left({ }^{31} \mathbf{C}_{\mathrm{k}}\right)\left({ }^{31} \mathbf{C}_{\mathrm{k}-1}\right)-\sum_{\mathrm{k}=1}^{30}{ }^{30} \mathrm{C}_{\mathrm{k}}\left({ }^{30} \mathbf{C}_{\mathrm{k}-1}\right)=\frac{\boldsymbol{\alpha}(60 !)}{(30 !)(31 !)},\)
where \(\alpha \in R\), then the value of \(16 \alpha\) is equal to
119272
If
\(\sum_{\mathrm{k}=1}^{31}\left({ }^{31} \mathbf{C}_{\mathrm{k}}\right)\left({ }^{31} \mathbf{C}_{\mathrm{k}-1}\right)-\sum_{\mathrm{k}=1}^{30}{ }^{30} \mathrm{C}_{\mathrm{k}}\left({ }^{30} \mathbf{C}_{\mathrm{k}-1}\right)=\frac{\boldsymbol{\alpha}(60 !)}{(30 !)(31 !)},\)
where \(\alpha \in R\), then the value of \(16 \alpha\) is equal to
119272
If
\(\sum_{\mathrm{k}=1}^{31}\left({ }^{31} \mathbf{C}_{\mathrm{k}}\right)\left({ }^{31} \mathbf{C}_{\mathrm{k}-1}\right)-\sum_{\mathrm{k}=1}^{30}{ }^{30} \mathrm{C}_{\mathrm{k}}\left({ }^{30} \mathbf{C}_{\mathrm{k}-1}\right)=\frac{\boldsymbol{\alpha}(60 !)}{(30 !)(31 !)},\)
where \(\alpha \in R\), then the value of \(16 \alpha\) is equal to