Simple Applications
Permutation and Combination

119267 \(P(n)=n(n+1)(n+5), n \in N\) is a multiple of

1 9
2 5
3 3
4 7
Permutation and Combination

119268 The value of \(\left(\frac{{ }^{50} \mathrm{C}_0}{1}+\frac{{ }^{50} \mathrm{C}_2}{3}+\ldots .+\frac{{ }^{50} \mathrm{C}_{50}}{51}\right)\) is

1 \(\frac{2^{50}}{51}\)
2 \(\frac{2^{50}-1}{51}\)
3 \(\frac{2^{50}-1}{50}\)
4 None of these
Permutation and Combination

119269 If \({ }^n C_{r-1}=10,{ }^n C_r=45\), and \({ }^n C_{r+1}=120\), then \(r\) equals to

1 1
2 2
3 3
4 4
Permutation and Combination

119271 The number of triplets \((x, y, z)\). where \(x, y, z\) are distinct non negative integers satisfying \(\mathbf{x}+\mathbf{y}+\mathrm{z}=\mathbf{1 5}\) is

1 80
2 114
3 92
4 136
Permutation and Combination

119267 \(P(n)=n(n+1)(n+5), n \in N\) is a multiple of

1 9
2 5
3 3
4 7
Permutation and Combination

119268 The value of \(\left(\frac{{ }^{50} \mathrm{C}_0}{1}+\frac{{ }^{50} \mathrm{C}_2}{3}+\ldots .+\frac{{ }^{50} \mathrm{C}_{50}}{51}\right)\) is

1 \(\frac{2^{50}}{51}\)
2 \(\frac{2^{50}-1}{51}\)
3 \(\frac{2^{50}-1}{50}\)
4 None of these
Permutation and Combination

119269 If \({ }^n C_{r-1}=10,{ }^n C_r=45\), and \({ }^n C_{r+1}=120\), then \(r\) equals to

1 1
2 2
3 3
4 4
Permutation and Combination

119271 The number of triplets \((x, y, z)\). where \(x, y, z\) are distinct non negative integers satisfying \(\mathbf{x}+\mathbf{y}+\mathrm{z}=\mathbf{1 5}\) is

1 80
2 114
3 92
4 136
Permutation and Combination

119267 \(P(n)=n(n+1)(n+5), n \in N\) is a multiple of

1 9
2 5
3 3
4 7
Permutation and Combination

119268 The value of \(\left(\frac{{ }^{50} \mathrm{C}_0}{1}+\frac{{ }^{50} \mathrm{C}_2}{3}+\ldots .+\frac{{ }^{50} \mathrm{C}_{50}}{51}\right)\) is

1 \(\frac{2^{50}}{51}\)
2 \(\frac{2^{50}-1}{51}\)
3 \(\frac{2^{50}-1}{50}\)
4 None of these
Permutation and Combination

119269 If \({ }^n C_{r-1}=10,{ }^n C_r=45\), and \({ }^n C_{r+1}=120\), then \(r\) equals to

1 1
2 2
3 3
4 4
Permutation and Combination

119271 The number of triplets \((x, y, z)\). where \(x, y, z\) are distinct non negative integers satisfying \(\mathbf{x}+\mathbf{y}+\mathrm{z}=\mathbf{1 5}\) is

1 80
2 114
3 92
4 136
Permutation and Combination

119267 \(P(n)=n(n+1)(n+5), n \in N\) is a multiple of

1 9
2 5
3 3
4 7
Permutation and Combination

119268 The value of \(\left(\frac{{ }^{50} \mathrm{C}_0}{1}+\frac{{ }^{50} \mathrm{C}_2}{3}+\ldots .+\frac{{ }^{50} \mathrm{C}_{50}}{51}\right)\) is

1 \(\frac{2^{50}}{51}\)
2 \(\frac{2^{50}-1}{51}\)
3 \(\frac{2^{50}-1}{50}\)
4 None of these
Permutation and Combination

119269 If \({ }^n C_{r-1}=10,{ }^n C_r=45\), and \({ }^n C_{r+1}=120\), then \(r\) equals to

1 1
2 2
3 3
4 4
Permutation and Combination

119271 The number of triplets \((x, y, z)\). where \(x, y, z\) are distinct non negative integers satisfying \(\mathbf{x}+\mathbf{y}+\mathrm{z}=\mathbf{1 5}\) is

1 80
2 114
3 92
4 136