119212
If a person has 3 coins of different denominations, the number of different sums can be formed is
1 3
2 7
3 8
4 3 !
Explanation:
B : Given, number of coins \(=3\) The no. of different sums are \(={ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3\) \(=3+3+1=7\)
AP EAMCET-19.08.2021
Permutation and Combination
119220
The number of ways of distributing 500 dissimilar boxes equally among ' 50 ' persons is
1 \(500 !(10 !)^{50} / 50\) !
2 \(500 !(50 !)^{10} / 10\) !
3 \(500 ! /(50 !)^{10}\)
4 \(500 ! /(10 !)^{50}\)
Explanation:
D If 500 dissimilar boxes is distributed among 50 person, then each person will get - \(\frac{500}{50}=10 \text { boxes }\) Number of ways of distributing them, \(=\frac{500 !}{(10 !)(10 !)(10 !) \ldots .(50 \text { times })}=\frac{500 !}{(10 !)^{50}}\)
AP EAMCET-06.07.2022
Permutation and Combination
119232
The total number of 7 digit positive integral numbers with distinct digits that can be formed using the digits \(4,3,7,2,1,0,5\) is
1 4320
2 4340
3 4310
4 4230
5 4220
Explanation:
A Given digits are 4, 3, 7, 2, 1, 0, 5 Total number of ways \(=6 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=4320\)
119212
If a person has 3 coins of different denominations, the number of different sums can be formed is
1 3
2 7
3 8
4 3 !
Explanation:
B : Given, number of coins \(=3\) The no. of different sums are \(={ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3\) \(=3+3+1=7\)
AP EAMCET-19.08.2021
Permutation and Combination
119220
The number of ways of distributing 500 dissimilar boxes equally among ' 50 ' persons is
1 \(500 !(10 !)^{50} / 50\) !
2 \(500 !(50 !)^{10} / 10\) !
3 \(500 ! /(50 !)^{10}\)
4 \(500 ! /(10 !)^{50}\)
Explanation:
D If 500 dissimilar boxes is distributed among 50 person, then each person will get - \(\frac{500}{50}=10 \text { boxes }\) Number of ways of distributing them, \(=\frac{500 !}{(10 !)(10 !)(10 !) \ldots .(50 \text { times })}=\frac{500 !}{(10 !)^{50}}\)
AP EAMCET-06.07.2022
Permutation and Combination
119232
The total number of 7 digit positive integral numbers with distinct digits that can be formed using the digits \(4,3,7,2,1,0,5\) is
1 4320
2 4340
3 4310
4 4230
5 4220
Explanation:
A Given digits are 4, 3, 7, 2, 1, 0, 5 Total number of ways \(=6 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=4320\)
119212
If a person has 3 coins of different denominations, the number of different sums can be formed is
1 3
2 7
3 8
4 3 !
Explanation:
B : Given, number of coins \(=3\) The no. of different sums are \(={ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3\) \(=3+3+1=7\)
AP EAMCET-19.08.2021
Permutation and Combination
119220
The number of ways of distributing 500 dissimilar boxes equally among ' 50 ' persons is
1 \(500 !(10 !)^{50} / 50\) !
2 \(500 !(50 !)^{10} / 10\) !
3 \(500 ! /(50 !)^{10}\)
4 \(500 ! /(10 !)^{50}\)
Explanation:
D If 500 dissimilar boxes is distributed among 50 person, then each person will get - \(\frac{500}{50}=10 \text { boxes }\) Number of ways of distributing them, \(=\frac{500 !}{(10 !)(10 !)(10 !) \ldots .(50 \text { times })}=\frac{500 !}{(10 !)^{50}}\)
AP EAMCET-06.07.2022
Permutation and Combination
119232
The total number of 7 digit positive integral numbers with distinct digits that can be formed using the digits \(4,3,7,2,1,0,5\) is
1 4320
2 4340
3 4310
4 4230
5 4220
Explanation:
A Given digits are 4, 3, 7, 2, 1, 0, 5 Total number of ways \(=6 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=4320\)