Tangent and Normal of Parabola
Parabola

120248 If a normal chord at a point \(t(\neq 0)\) on the parabola \(y^2=9 x\) subtends a right angle at its vertex, then \(t=\)

1 \(\sqrt{3}\)
2 \(\sqrt{5}\)
3 \(\pm \sqrt{3}\)
4 \(\pm \sqrt{2}\)
Parabola

120249 The locus of the points intersections of perpendicular normal's to the parabola \(y^2=\) 4ax, is

1 \(\mathrm{y}^2-2 \mathrm{ax}+2 \mathrm{a}^2=0\)
2 \(y^2+a x+2 a^2=0\)
3 \(\mathrm{y}^2-\mathrm{ax}+2 \mathrm{a}^2=0\)
4 \(y^2-a x+3 a^2=0\)
Parabola

120250 If \(a x+b y=1\) is a normal to the parabola \(y^2=\) \(4 \mathrm{px}\) then the condition is

1 \(4 a b=a^2+b^2\)
2 \(4 \mathrm{pab}+\mathrm{ab}^3=\mathrm{a}^2 \mathrm{~b}^2\)
3 \(\mathrm{pa}^3=\mathrm{b}^2-2 \mathrm{pab}^2\)
4 \(\mathrm{pa}^2+4 \mathrm{pa}=\mathrm{a}+\mathrm{b}\)
Parabola

120251 If \(P\) and the origin are the points of intersection of the parabolas \(y^2=32 x\) and \(2 x^2=27 y\); and if \(\theta\) is the acute angle between these curves at \(P\), then \(5 \sqrt{\tan \theta}=\)

1 2
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{2}\)
4 3
Parabola

120252 The angle between the tangents drawn from the point \((1,4)\) to the parabola \(y^2=4 x\), is:

1 \(\pi / 2\)
2 \(\pi / 6\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Parabola

120248 If a normal chord at a point \(t(\neq 0)\) on the parabola \(y^2=9 x\) subtends a right angle at its vertex, then \(t=\)

1 \(\sqrt{3}\)
2 \(\sqrt{5}\)
3 \(\pm \sqrt{3}\)
4 \(\pm \sqrt{2}\)
Parabola

120249 The locus of the points intersections of perpendicular normal's to the parabola \(y^2=\) 4ax, is

1 \(\mathrm{y}^2-2 \mathrm{ax}+2 \mathrm{a}^2=0\)
2 \(y^2+a x+2 a^2=0\)
3 \(\mathrm{y}^2-\mathrm{ax}+2 \mathrm{a}^2=0\)
4 \(y^2-a x+3 a^2=0\)
Parabola

120250 If \(a x+b y=1\) is a normal to the parabola \(y^2=\) \(4 \mathrm{px}\) then the condition is

1 \(4 a b=a^2+b^2\)
2 \(4 \mathrm{pab}+\mathrm{ab}^3=\mathrm{a}^2 \mathrm{~b}^2\)
3 \(\mathrm{pa}^3=\mathrm{b}^2-2 \mathrm{pab}^2\)
4 \(\mathrm{pa}^2+4 \mathrm{pa}=\mathrm{a}+\mathrm{b}\)
Parabola

120251 If \(P\) and the origin are the points of intersection of the parabolas \(y^2=32 x\) and \(2 x^2=27 y\); and if \(\theta\) is the acute angle between these curves at \(P\), then \(5 \sqrt{\tan \theta}=\)

1 2
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{2}\)
4 3
Parabola

120252 The angle between the tangents drawn from the point \((1,4)\) to the parabola \(y^2=4 x\), is:

1 \(\pi / 2\)
2 \(\pi / 6\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Parabola

120248 If a normal chord at a point \(t(\neq 0)\) on the parabola \(y^2=9 x\) subtends a right angle at its vertex, then \(t=\)

1 \(\sqrt{3}\)
2 \(\sqrt{5}\)
3 \(\pm \sqrt{3}\)
4 \(\pm \sqrt{2}\)
Parabola

120249 The locus of the points intersections of perpendicular normal's to the parabola \(y^2=\) 4ax, is

1 \(\mathrm{y}^2-2 \mathrm{ax}+2 \mathrm{a}^2=0\)
2 \(y^2+a x+2 a^2=0\)
3 \(\mathrm{y}^2-\mathrm{ax}+2 \mathrm{a}^2=0\)
4 \(y^2-a x+3 a^2=0\)
Parabola

120250 If \(a x+b y=1\) is a normal to the parabola \(y^2=\) \(4 \mathrm{px}\) then the condition is

1 \(4 a b=a^2+b^2\)
2 \(4 \mathrm{pab}+\mathrm{ab}^3=\mathrm{a}^2 \mathrm{~b}^2\)
3 \(\mathrm{pa}^3=\mathrm{b}^2-2 \mathrm{pab}^2\)
4 \(\mathrm{pa}^2+4 \mathrm{pa}=\mathrm{a}+\mathrm{b}\)
Parabola

120251 If \(P\) and the origin are the points of intersection of the parabolas \(y^2=32 x\) and \(2 x^2=27 y\); and if \(\theta\) is the acute angle between these curves at \(P\), then \(5 \sqrt{\tan \theta}=\)

1 2
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{2}\)
4 3
Parabola

120252 The angle between the tangents drawn from the point \((1,4)\) to the parabola \(y^2=4 x\), is:

1 \(\pi / 2\)
2 \(\pi / 6\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Parabola

120248 If a normal chord at a point \(t(\neq 0)\) on the parabola \(y^2=9 x\) subtends a right angle at its vertex, then \(t=\)

1 \(\sqrt{3}\)
2 \(\sqrt{5}\)
3 \(\pm \sqrt{3}\)
4 \(\pm \sqrt{2}\)
Parabola

120249 The locus of the points intersections of perpendicular normal's to the parabola \(y^2=\) 4ax, is

1 \(\mathrm{y}^2-2 \mathrm{ax}+2 \mathrm{a}^2=0\)
2 \(y^2+a x+2 a^2=0\)
3 \(\mathrm{y}^2-\mathrm{ax}+2 \mathrm{a}^2=0\)
4 \(y^2-a x+3 a^2=0\)
Parabola

120250 If \(a x+b y=1\) is a normal to the parabola \(y^2=\) \(4 \mathrm{px}\) then the condition is

1 \(4 a b=a^2+b^2\)
2 \(4 \mathrm{pab}+\mathrm{ab}^3=\mathrm{a}^2 \mathrm{~b}^2\)
3 \(\mathrm{pa}^3=\mathrm{b}^2-2 \mathrm{pab}^2\)
4 \(\mathrm{pa}^2+4 \mathrm{pa}=\mathrm{a}+\mathrm{b}\)
Parabola

120251 If \(P\) and the origin are the points of intersection of the parabolas \(y^2=32 x\) and \(2 x^2=27 y\); and if \(\theta\) is the acute angle between these curves at \(P\), then \(5 \sqrt{\tan \theta}=\)

1 2
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{2}\)
4 3
Parabola

120252 The angle between the tangents drawn from the point \((1,4)\) to the parabola \(y^2=4 x\), is:

1 \(\pi / 2\)
2 \(\pi / 6\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Parabola

120248 If a normal chord at a point \(t(\neq 0)\) on the parabola \(y^2=9 x\) subtends a right angle at its vertex, then \(t=\)

1 \(\sqrt{3}\)
2 \(\sqrt{5}\)
3 \(\pm \sqrt{3}\)
4 \(\pm \sqrt{2}\)
Parabola

120249 The locus of the points intersections of perpendicular normal's to the parabola \(y^2=\) 4ax, is

1 \(\mathrm{y}^2-2 \mathrm{ax}+2 \mathrm{a}^2=0\)
2 \(y^2+a x+2 a^2=0\)
3 \(\mathrm{y}^2-\mathrm{ax}+2 \mathrm{a}^2=0\)
4 \(y^2-a x+3 a^2=0\)
Parabola

120250 If \(a x+b y=1\) is a normal to the parabola \(y^2=\) \(4 \mathrm{px}\) then the condition is

1 \(4 a b=a^2+b^2\)
2 \(4 \mathrm{pab}+\mathrm{ab}^3=\mathrm{a}^2 \mathrm{~b}^2\)
3 \(\mathrm{pa}^3=\mathrm{b}^2-2 \mathrm{pab}^2\)
4 \(\mathrm{pa}^2+4 \mathrm{pa}=\mathrm{a}+\mathrm{b}\)
Parabola

120251 If \(P\) and the origin are the points of intersection of the parabolas \(y^2=32 x\) and \(2 x^2=27 y\); and if \(\theta\) is the acute angle between these curves at \(P\), then \(5 \sqrt{\tan \theta}=\)

1 2
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{2}\)
4 3
Parabola

120252 The angle between the tangents drawn from the point \((1,4)\) to the parabola \(y^2=4 x\), is:

1 \(\pi / 2\)
2 \(\pi / 6\)
3 \(\pi / 4\)
4 \(\pi / 3\)