Tangent and Normal of Parabola
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120225 If \(y+b=m_1(x+a)\) and \(y+b=m_2(x+a)\) are two tangents to \(\mathrm{y}^2=4 \mathrm{ax}\), then

1 \(\mathrm{m}_1+\mathrm{m}_2=0\)
2 \(\mathrm{m}_1 \mathrm{~m}_2=1\)
3 \(\mathrm{m}_1 \mathrm{~m}_2=-1\)
4 None of these
Parabola

120227 The condition that the line \(\frac{x}{p}+\frac{y}{q}=1\) be a normal to the parabola \(y^2=4 \mathrm{ax}\) is

1 \(\mathrm{p}^3=2 a \mathrm{p}^2+a \mathrm{q}^2\)
2 \(\mathrm{p}^3=2 \mathrm{aq}{ }^2+\mathrm{ap}^2\)
3 \(\mathrm{q}^3=2 \mathrm{ap}^2+\mathrm{aq} \mathrm{q}^2\)
4 None of these
Parabola

120228 The normal at the point \(\left(a_1{ }^2, 2 a t_1\right)\) on the parabola, cuts the parabola again at the point whose parameter is

1 \(\mathrm{t}_2=\mathrm{t}_1-\frac{2}{\mathrm{t}_1}\)
2 \(t_2=t_1+\frac{2}{t_1}\)
3 \(t_2=-\left(t_1+\frac{2}{t_1}\right)\)
4 None of these
Parabola

120229 If \(2 x+y+k=0\) is a normal to the parabola \(y^2\) \(=-8 x\), then the value of \(k\), is

1 8
2 16
3 24
4 32
Parabola

120225 If \(y+b=m_1(x+a)\) and \(y+b=m_2(x+a)\) are two tangents to \(\mathrm{y}^2=4 \mathrm{ax}\), then

1 \(\mathrm{m}_1+\mathrm{m}_2=0\)
2 \(\mathrm{m}_1 \mathrm{~m}_2=1\)
3 \(\mathrm{m}_1 \mathrm{~m}_2=-1\)
4 None of these
Parabola

120227 The condition that the line \(\frac{x}{p}+\frac{y}{q}=1\) be a normal to the parabola \(y^2=4 \mathrm{ax}\) is

1 \(\mathrm{p}^3=2 a \mathrm{p}^2+a \mathrm{q}^2\)
2 \(\mathrm{p}^3=2 \mathrm{aq}{ }^2+\mathrm{ap}^2\)
3 \(\mathrm{q}^3=2 \mathrm{ap}^2+\mathrm{aq} \mathrm{q}^2\)
4 None of these
Parabola

120228 The normal at the point \(\left(a_1{ }^2, 2 a t_1\right)\) on the parabola, cuts the parabola again at the point whose parameter is

1 \(\mathrm{t}_2=\mathrm{t}_1-\frac{2}{\mathrm{t}_1}\)
2 \(t_2=t_1+\frac{2}{t_1}\)
3 \(t_2=-\left(t_1+\frac{2}{t_1}\right)\)
4 None of these
Parabola

120229 If \(2 x+y+k=0\) is a normal to the parabola \(y^2\) \(=-8 x\), then the value of \(k\), is

1 8
2 16
3 24
4 32
Parabola

120225 If \(y+b=m_1(x+a)\) and \(y+b=m_2(x+a)\) are two tangents to \(\mathrm{y}^2=4 \mathrm{ax}\), then

1 \(\mathrm{m}_1+\mathrm{m}_2=0\)
2 \(\mathrm{m}_1 \mathrm{~m}_2=1\)
3 \(\mathrm{m}_1 \mathrm{~m}_2=-1\)
4 None of these
Parabola

120227 The condition that the line \(\frac{x}{p}+\frac{y}{q}=1\) be a normal to the parabola \(y^2=4 \mathrm{ax}\) is

1 \(\mathrm{p}^3=2 a \mathrm{p}^2+a \mathrm{q}^2\)
2 \(\mathrm{p}^3=2 \mathrm{aq}{ }^2+\mathrm{ap}^2\)
3 \(\mathrm{q}^3=2 \mathrm{ap}^2+\mathrm{aq} \mathrm{q}^2\)
4 None of these
Parabola

120228 The normal at the point \(\left(a_1{ }^2, 2 a t_1\right)\) on the parabola, cuts the parabola again at the point whose parameter is

1 \(\mathrm{t}_2=\mathrm{t}_1-\frac{2}{\mathrm{t}_1}\)
2 \(t_2=t_1+\frac{2}{t_1}\)
3 \(t_2=-\left(t_1+\frac{2}{t_1}\right)\)
4 None of these
Parabola

120229 If \(2 x+y+k=0\) is a normal to the parabola \(y^2\) \(=-8 x\), then the value of \(k\), is

1 8
2 16
3 24
4 32
Parabola

120225 If \(y+b=m_1(x+a)\) and \(y+b=m_2(x+a)\) are two tangents to \(\mathrm{y}^2=4 \mathrm{ax}\), then

1 \(\mathrm{m}_1+\mathrm{m}_2=0\)
2 \(\mathrm{m}_1 \mathrm{~m}_2=1\)
3 \(\mathrm{m}_1 \mathrm{~m}_2=-1\)
4 None of these
Parabola

120227 The condition that the line \(\frac{x}{p}+\frac{y}{q}=1\) be a normal to the parabola \(y^2=4 \mathrm{ax}\) is

1 \(\mathrm{p}^3=2 a \mathrm{p}^2+a \mathrm{q}^2\)
2 \(\mathrm{p}^3=2 \mathrm{aq}{ }^2+\mathrm{ap}^2\)
3 \(\mathrm{q}^3=2 \mathrm{ap}^2+\mathrm{aq} \mathrm{q}^2\)
4 None of these
Parabola

120228 The normal at the point \(\left(a_1{ }^2, 2 a t_1\right)\) on the parabola, cuts the parabola again at the point whose parameter is

1 \(\mathrm{t}_2=\mathrm{t}_1-\frac{2}{\mathrm{t}_1}\)
2 \(t_2=t_1+\frac{2}{t_1}\)
3 \(t_2=-\left(t_1+\frac{2}{t_1}\right)\)
4 None of these
Parabola

120229 If \(2 x+y+k=0\) is a normal to the parabola \(y^2\) \(=-8 x\), then the value of \(k\), is

1 8
2 16
3 24
4 32