Explanation:
C Given Parabola equation, \(y=\alpha x^2-6 x+\beta\)
passes through \((0,2)\) here,
\(2=\alpha(0)^2-6(0)+\beta\)
\(\beta=2\)
Also, \(\frac{d y}{d x}=2 \alpha x-6\)
\(\therefore \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=3 / 2}=2 \alpha\left(\frac{3}{2}\right)-6\)
Since, the tangent is parallel to \(x\)-axis, or \(\quad 3 \alpha-6=0\)
\(\alpha=2\)Hence, \(\alpha=2\) and \(\beta=2\).