Tangent and Normal of Parabola
Parabola

120221 The equation of one of the common tangents to the parabola \(y^2=8 x\) and \(x^2+y^2-12 x+4=0\) is

1 \(y=-x+2\)
2 \(y=x-2\)
3 \(y=x+2\)
4 None of these
Parabola

120222 What is the slope of the normal at the point \(\left(a t^2, 2 a t\right)\) of the parabola \(y^2=4 a x\) ?

1 \(\frac{1}{\mathrm{t}}\)
2 \(\mathrm{t}\)
3 \(-\mathrm{t}\)
4 \(-\frac{1}{\mathrm{t}}\)
Parabola

120223 If the parabola \(y=\alpha x^2-6 x+\beta\) passes through the point \((0,2)\) and has its tangent at \(x=\frac{3}{2}\) parallel to \(x\)-axis, then

1 \(\alpha=2, \beta=-2\)
2 \(\alpha=-2, \beta=2\)
3 \(\alpha=2, \beta=2\)
4 \(\alpha=-2, \beta=2\)
Parabola

120224 The point of contact of the tangent \(x+2 y+2=\) 0 with the parabola \(x^2=16 y\) is

1 \((2,-2)\)
2 \((4,1)\)
3 \((-4,1)\)
4 \((8,4)\)
Parabola

120221 The equation of one of the common tangents to the parabola \(y^2=8 x\) and \(x^2+y^2-12 x+4=0\) is

1 \(y=-x+2\)
2 \(y=x-2\)
3 \(y=x+2\)
4 None of these
Parabola

120222 What is the slope of the normal at the point \(\left(a t^2, 2 a t\right)\) of the parabola \(y^2=4 a x\) ?

1 \(\frac{1}{\mathrm{t}}\)
2 \(\mathrm{t}\)
3 \(-\mathrm{t}\)
4 \(-\frac{1}{\mathrm{t}}\)
Parabola

120223 If the parabola \(y=\alpha x^2-6 x+\beta\) passes through the point \((0,2)\) and has its tangent at \(x=\frac{3}{2}\) parallel to \(x\)-axis, then

1 \(\alpha=2, \beta=-2\)
2 \(\alpha=-2, \beta=2\)
3 \(\alpha=2, \beta=2\)
4 \(\alpha=-2, \beta=2\)
Parabola

120224 The point of contact of the tangent \(x+2 y+2=\) 0 with the parabola \(x^2=16 y\) is

1 \((2,-2)\)
2 \((4,1)\)
3 \((-4,1)\)
4 \((8,4)\)
Parabola

120221 The equation of one of the common tangents to the parabola \(y^2=8 x\) and \(x^2+y^2-12 x+4=0\) is

1 \(y=-x+2\)
2 \(y=x-2\)
3 \(y=x+2\)
4 None of these
Parabola

120222 What is the slope of the normal at the point \(\left(a t^2, 2 a t\right)\) of the parabola \(y^2=4 a x\) ?

1 \(\frac{1}{\mathrm{t}}\)
2 \(\mathrm{t}\)
3 \(-\mathrm{t}\)
4 \(-\frac{1}{\mathrm{t}}\)
Parabola

120223 If the parabola \(y=\alpha x^2-6 x+\beta\) passes through the point \((0,2)\) and has its tangent at \(x=\frac{3}{2}\) parallel to \(x\)-axis, then

1 \(\alpha=2, \beta=-2\)
2 \(\alpha=-2, \beta=2\)
3 \(\alpha=2, \beta=2\)
4 \(\alpha=-2, \beta=2\)
Parabola

120224 The point of contact of the tangent \(x+2 y+2=\) 0 with the parabola \(x^2=16 y\) is

1 \((2,-2)\)
2 \((4,1)\)
3 \((-4,1)\)
4 \((8,4)\)
Parabola

120221 The equation of one of the common tangents to the parabola \(y^2=8 x\) and \(x^2+y^2-12 x+4=0\) is

1 \(y=-x+2\)
2 \(y=x-2\)
3 \(y=x+2\)
4 None of these
Parabola

120222 What is the slope of the normal at the point \(\left(a t^2, 2 a t\right)\) of the parabola \(y^2=4 a x\) ?

1 \(\frac{1}{\mathrm{t}}\)
2 \(\mathrm{t}\)
3 \(-\mathrm{t}\)
4 \(-\frac{1}{\mathrm{t}}\)
Parabola

120223 If the parabola \(y=\alpha x^2-6 x+\beta\) passes through the point \((0,2)\) and has its tangent at \(x=\frac{3}{2}\) parallel to \(x\)-axis, then

1 \(\alpha=2, \beta=-2\)
2 \(\alpha=-2, \beta=2\)
3 \(\alpha=2, \beta=2\)
4 \(\alpha=-2, \beta=2\)
Parabola

120224 The point of contact of the tangent \(x+2 y+2=\) 0 with the parabola \(x^2=16 y\) is

1 \((2,-2)\)
2 \((4,1)\)
3 \((-4,1)\)
4 \((8,4)\)