Equation of Parabola with Given Focus and Directrix
Parabola

120944 The focus of the parabola \(y^2-x-2 y+2=0\) is

1 \((1 / 4,0)\)
2 \((1,2)\)
3 \((5 / 4,1)\)
4 \((3 / 4,5 / 2)\)
Parabola

120945 If parabola is passing through \((2,3)\), vertex \((0\), \(0)\) and axis is along \(X\)-axis, then the equation of parabola is

1 \(\mathrm{y}^2=\frac{9}{2} \mathrm{x}\)
2 \(\mathrm{x}^2=\frac{9}{2} \mathrm{y}\)
3 \(\mathrm{y}^2=\frac{3}{2} \mathrm{x}\)
4 \(x^2=\frac{3}{2} y\)
Parabola

120946 If the parabolas \(y^2=4 x\) and \(x^2=32 y\) intersect at \((16,8)\) at an angle \(\theta\), then \(\theta=\)

1 \(\tan ^{-1} 5 / 3\)
2 \(\tan ^{-1} 4 / 5\)
3 \(\tan ^{-1} 3 / 5\)
4 \(\pi / 2\)
Parabola

120947 If \(a x^2+4 x y+y^2+a x+3 y+2=0\) represents a parabola, then a is

1 -4
2 4
3 0
4 6
Parabola

120948 If the vertex is \((3,0)\) and the extremities of the latusrectum are \((4,3)\) and \((4,-3)\), then the equation of the parabola is

1 \(y^2=4(x-3)\)
2 \(x^2=4(y-3)\)
3 \(y^2=-4(x+3)\)
4 \(x^2=-4(y+3)\)
Parabola

120944 The focus of the parabola \(y^2-x-2 y+2=0\) is

1 \((1 / 4,0)\)
2 \((1,2)\)
3 \((5 / 4,1)\)
4 \((3 / 4,5 / 2)\)
Parabola

120945 If parabola is passing through \((2,3)\), vertex \((0\), \(0)\) and axis is along \(X\)-axis, then the equation of parabola is

1 \(\mathrm{y}^2=\frac{9}{2} \mathrm{x}\)
2 \(\mathrm{x}^2=\frac{9}{2} \mathrm{y}\)
3 \(\mathrm{y}^2=\frac{3}{2} \mathrm{x}\)
4 \(x^2=\frac{3}{2} y\)
Parabola

120946 If the parabolas \(y^2=4 x\) and \(x^2=32 y\) intersect at \((16,8)\) at an angle \(\theta\), then \(\theta=\)

1 \(\tan ^{-1} 5 / 3\)
2 \(\tan ^{-1} 4 / 5\)
3 \(\tan ^{-1} 3 / 5\)
4 \(\pi / 2\)
Parabola

120947 If \(a x^2+4 x y+y^2+a x+3 y+2=0\) represents a parabola, then a is

1 -4
2 4
3 0
4 6
Parabola

120948 If the vertex is \((3,0)\) and the extremities of the latusrectum are \((4,3)\) and \((4,-3)\), then the equation of the parabola is

1 \(y^2=4(x-3)\)
2 \(x^2=4(y-3)\)
3 \(y^2=-4(x+3)\)
4 \(x^2=-4(y+3)\)
Parabola

120944 The focus of the parabola \(y^2-x-2 y+2=0\) is

1 \((1 / 4,0)\)
2 \((1,2)\)
3 \((5 / 4,1)\)
4 \((3 / 4,5 / 2)\)
Parabola

120945 If parabola is passing through \((2,3)\), vertex \((0\), \(0)\) and axis is along \(X\)-axis, then the equation of parabola is

1 \(\mathrm{y}^2=\frac{9}{2} \mathrm{x}\)
2 \(\mathrm{x}^2=\frac{9}{2} \mathrm{y}\)
3 \(\mathrm{y}^2=\frac{3}{2} \mathrm{x}\)
4 \(x^2=\frac{3}{2} y\)
Parabola

120946 If the parabolas \(y^2=4 x\) and \(x^2=32 y\) intersect at \((16,8)\) at an angle \(\theta\), then \(\theta=\)

1 \(\tan ^{-1} 5 / 3\)
2 \(\tan ^{-1} 4 / 5\)
3 \(\tan ^{-1} 3 / 5\)
4 \(\pi / 2\)
Parabola

120947 If \(a x^2+4 x y+y^2+a x+3 y+2=0\) represents a parabola, then a is

1 -4
2 4
3 0
4 6
Parabola

120948 If the vertex is \((3,0)\) and the extremities of the latusrectum are \((4,3)\) and \((4,-3)\), then the equation of the parabola is

1 \(y^2=4(x-3)\)
2 \(x^2=4(y-3)\)
3 \(y^2=-4(x+3)\)
4 \(x^2=-4(y+3)\)
Parabola

120944 The focus of the parabola \(y^2-x-2 y+2=0\) is

1 \((1 / 4,0)\)
2 \((1,2)\)
3 \((5 / 4,1)\)
4 \((3 / 4,5 / 2)\)
Parabola

120945 If parabola is passing through \((2,3)\), vertex \((0\), \(0)\) and axis is along \(X\)-axis, then the equation of parabola is

1 \(\mathrm{y}^2=\frac{9}{2} \mathrm{x}\)
2 \(\mathrm{x}^2=\frac{9}{2} \mathrm{y}\)
3 \(\mathrm{y}^2=\frac{3}{2} \mathrm{x}\)
4 \(x^2=\frac{3}{2} y\)
Parabola

120946 If the parabolas \(y^2=4 x\) and \(x^2=32 y\) intersect at \((16,8)\) at an angle \(\theta\), then \(\theta=\)

1 \(\tan ^{-1} 5 / 3\)
2 \(\tan ^{-1} 4 / 5\)
3 \(\tan ^{-1} 3 / 5\)
4 \(\pi / 2\)
Parabola

120947 If \(a x^2+4 x y+y^2+a x+3 y+2=0\) represents a parabola, then a is

1 -4
2 4
3 0
4 6
Parabola

120948 If the vertex is \((3,0)\) and the extremities of the latusrectum are \((4,3)\) and \((4,-3)\), then the equation of the parabola is

1 \(y^2=4(x-3)\)
2 \(x^2=4(y-3)\)
3 \(y^2=-4(x+3)\)
4 \(x^2=-4(y+3)\)
Parabola

120944 The focus of the parabola \(y^2-x-2 y+2=0\) is

1 \((1 / 4,0)\)
2 \((1,2)\)
3 \((5 / 4,1)\)
4 \((3 / 4,5 / 2)\)
Parabola

120945 If parabola is passing through \((2,3)\), vertex \((0\), \(0)\) and axis is along \(X\)-axis, then the equation of parabola is

1 \(\mathrm{y}^2=\frac{9}{2} \mathrm{x}\)
2 \(\mathrm{x}^2=\frac{9}{2} \mathrm{y}\)
3 \(\mathrm{y}^2=\frac{3}{2} \mathrm{x}\)
4 \(x^2=\frac{3}{2} y\)
Parabola

120946 If the parabolas \(y^2=4 x\) and \(x^2=32 y\) intersect at \((16,8)\) at an angle \(\theta\), then \(\theta=\)

1 \(\tan ^{-1} 5 / 3\)
2 \(\tan ^{-1} 4 / 5\)
3 \(\tan ^{-1} 3 / 5\)
4 \(\pi / 2\)
Parabola

120947 If \(a x^2+4 x y+y^2+a x+3 y+2=0\) represents a parabola, then a is

1 -4
2 4
3 0
4 6
Parabola

120948 If the vertex is \((3,0)\) and the extremities of the latusrectum are \((4,3)\) and \((4,-3)\), then the equation of the parabola is

1 \(y^2=4(x-3)\)
2 \(x^2=4(y-3)\)
3 \(y^2=-4(x+3)\)
4 \(x^2=-4(y+3)\)