Explanation:
D Let, foot of perpendicular of \((5,4)\) on directrix is \(\left(\mathrm{x}_1, \mathrm{y}_1\right)\)
\(\quad \frac{\mathrm{x}_1-5}{3} =\frac{\mathrm{y}_1-4}{1}=\frac{-(-10)}{10}\)
\(\therefore \quad\left(\mathrm{x}_1, \mathrm{y}_1\right) \equiv(8,5)\)
So, focus of parabola will be \(\mathrm{S}=(2,3)\)
Let, \(\quad \mathrm{P}(\mathrm{x}, \mathrm{y})\) be any point on parabola, then
\(\quad(x-2)^2+(y-3)^2=\frac{(3 x+y-29)^2}{10}\)
\(10\left(x^2+y^2-4 x-6 y+13\right)=9 x^2+y^2+841+6 x y-58 y-174 x\)
\(x^2+9 y^2-6 x y+134 x-2 y-711=0\)
And, given parabola -
\(\quad x^2+a y^2+b x y+c x+d y+k=0\)
\(\therefore a=9, b=-6, c=134, d=-2, k=-711\)
\(\therefore a+b+c+d+k=-576\)And, given parabola -