Equation of Parabola with Given Focus and Directrix
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120940 Find the length of the line segment joining the vertex of the parabola \(y^2=4 \mathrm{ax}\) and a point on the parabola, where the line segment makes an angle \(\theta\) to the \(\mathrm{X}\)-axis.

1 \(\frac{2 a \cos \theta}{\sin ^2 \theta}\)
2 \(\frac{4 \mathrm{a} \cos \theta}{\sin ^2 \theta}\)
3 \(\frac{4 \mathrm{a} \cos \theta}{3 \sin ^2 \theta}\)
4 None of these
Parabola

120941 The axis of the parabola \(9 y^2-16 x-12 y-57=\) 0 is

1 \(3 y=2\)
2 \(x+3 y=3\)
3 \(2 \mathrm{x}=3\)
4 \(y=3\)
Parabola

120942 The locus of the middle points of chords of the parabola \(y^2=8 x\) drawn through the vertex is a parabola whose

1 Focus is \((2,0)\)
2 Latusrectum \(=8\)
3 Focus is \((0,2)\)
4 Latusrectum \(=4\)
Parabola

120943 The length of the chord of the parabola \(x^2=4 a y\) passing through the vertex and having slope \(\tan \alpha\) is

1 \(4 \mathrm{a} \operatorname{cosec} \alpha \cdot \cot \alpha\)
2 \(4 \mathrm{a} \tan \alpha \cdot \sec \alpha\)
3 \(4 \mathrm{a} \cos \alpha \cdot \cot \alpha\)
4 \(4 \mathrm{a} \sin \alpha \cdot \tan \alpha\)
Parabola

120940 Find the length of the line segment joining the vertex of the parabola \(y^2=4 \mathrm{ax}\) and a point on the parabola, where the line segment makes an angle \(\theta\) to the \(\mathrm{X}\)-axis.

1 \(\frac{2 a \cos \theta}{\sin ^2 \theta}\)
2 \(\frac{4 \mathrm{a} \cos \theta}{\sin ^2 \theta}\)
3 \(\frac{4 \mathrm{a} \cos \theta}{3 \sin ^2 \theta}\)
4 None of these
Parabola

120941 The axis of the parabola \(9 y^2-16 x-12 y-57=\) 0 is

1 \(3 y=2\)
2 \(x+3 y=3\)
3 \(2 \mathrm{x}=3\)
4 \(y=3\)
Parabola

120942 The locus of the middle points of chords of the parabola \(y^2=8 x\) drawn through the vertex is a parabola whose

1 Focus is \((2,0)\)
2 Latusrectum \(=8\)
3 Focus is \((0,2)\)
4 Latusrectum \(=4\)
Parabola

120943 The length of the chord of the parabola \(x^2=4 a y\) passing through the vertex and having slope \(\tan \alpha\) is

1 \(4 \mathrm{a} \operatorname{cosec} \alpha \cdot \cot \alpha\)
2 \(4 \mathrm{a} \tan \alpha \cdot \sec \alpha\)
3 \(4 \mathrm{a} \cos \alpha \cdot \cot \alpha\)
4 \(4 \mathrm{a} \sin \alpha \cdot \tan \alpha\)
Parabola

120940 Find the length of the line segment joining the vertex of the parabola \(y^2=4 \mathrm{ax}\) and a point on the parabola, where the line segment makes an angle \(\theta\) to the \(\mathrm{X}\)-axis.

1 \(\frac{2 a \cos \theta}{\sin ^2 \theta}\)
2 \(\frac{4 \mathrm{a} \cos \theta}{\sin ^2 \theta}\)
3 \(\frac{4 \mathrm{a} \cos \theta}{3 \sin ^2 \theta}\)
4 None of these
Parabola

120941 The axis of the parabola \(9 y^2-16 x-12 y-57=\) 0 is

1 \(3 y=2\)
2 \(x+3 y=3\)
3 \(2 \mathrm{x}=3\)
4 \(y=3\)
Parabola

120942 The locus of the middle points of chords of the parabola \(y^2=8 x\) drawn through the vertex is a parabola whose

1 Focus is \((2,0)\)
2 Latusrectum \(=8\)
3 Focus is \((0,2)\)
4 Latusrectum \(=4\)
Parabola

120943 The length of the chord of the parabola \(x^2=4 a y\) passing through the vertex and having slope \(\tan \alpha\) is

1 \(4 \mathrm{a} \operatorname{cosec} \alpha \cdot \cot \alpha\)
2 \(4 \mathrm{a} \tan \alpha \cdot \sec \alpha\)
3 \(4 \mathrm{a} \cos \alpha \cdot \cot \alpha\)
4 \(4 \mathrm{a} \sin \alpha \cdot \tan \alpha\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120940 Find the length of the line segment joining the vertex of the parabola \(y^2=4 \mathrm{ax}\) and a point on the parabola, where the line segment makes an angle \(\theta\) to the \(\mathrm{X}\)-axis.

1 \(\frac{2 a \cos \theta}{\sin ^2 \theta}\)
2 \(\frac{4 \mathrm{a} \cos \theta}{\sin ^2 \theta}\)
3 \(\frac{4 \mathrm{a} \cos \theta}{3 \sin ^2 \theta}\)
4 None of these
Parabola

120941 The axis of the parabola \(9 y^2-16 x-12 y-57=\) 0 is

1 \(3 y=2\)
2 \(x+3 y=3\)
3 \(2 \mathrm{x}=3\)
4 \(y=3\)
Parabola

120942 The locus of the middle points of chords of the parabola \(y^2=8 x\) drawn through the vertex is a parabola whose

1 Focus is \((2,0)\)
2 Latusrectum \(=8\)
3 Focus is \((0,2)\)
4 Latusrectum \(=4\)
Parabola

120943 The length of the chord of the parabola \(x^2=4 a y\) passing through the vertex and having slope \(\tan \alpha\) is

1 \(4 \mathrm{a} \operatorname{cosec} \alpha \cdot \cot \alpha\)
2 \(4 \mathrm{a} \tan \alpha \cdot \sec \alpha\)
3 \(4 \mathrm{a} \cos \alpha \cdot \cot \alpha\)
4 \(4 \mathrm{a} \sin \alpha \cdot \tan \alpha\)