Explanation:
D According to question,
\(A B\) is the chord with \(A\) fixed at the vertex of the parabola and \(\mathrm{B}\) moving along the parabola.
And, \(\mathrm{M}(\mathrm{h}, \mathrm{k})\) is the midpoint of \(\mathrm{AB}\) -
Let,
\(\mathrm{B} =(\mathrm{x}, \mathrm{y}) \text { then }-\)
\(\mathrm{h} =\frac{\mathrm{x}}{2}, \mathrm{k}=\frac{\mathrm{y}}{2}\)
\(\mathrm{x} =2 \mathrm{~h}, \mathrm{y}=2 \mathrm{k}\)
Since, \((\mathrm{x}, \mathrm{y})\) lie on the \(\mathrm{y}^2=8 \mathrm{x}\)
\(\Rightarrow \quad(2 \mathrm{k})^2=8.2 \mathrm{~h}\)
\(4 \mathrm{k}^2=16 \mathrm{~h}\)
\(\mathrm{k}^2=4 \mathrm{~h}\)
\(\therefore\) Equation of locus, \(\mathrm{y}^2=4 \mathrm{x}\)
Latus rectum \(=4\)
focus \(=(1,0)\)