Standard Equation of Parabola (parametric form)
Parabola

120090 If the straight line \(y=m x+c\) is parallel to the axis of the parabola \(y^2=l x\) and intersects the parabola at \(\left(\frac{c^2}{8}, c\right)\), then the length of the latus rectum is

1 2
2 3
3 4
4 8
Parabola

120091 Let \(M\) be the foot of the perpendicular from a point \(P\) on the parabola \(y^2=8(x-3)\) onto its directrix and let \(S\) be the focus on the parabola. If \(\triangle \mathrm{SPM}\) is an equilateral triangle, then \(P\) is equal to

1 \((4 \sqrt{3}, 8)\)
2 \((8,4 \sqrt{3})\)
3 \((9,4 \sqrt{3})\)
4 \((4 \sqrt{3}, 9)\)
Parabola

120092 If the double ordinate of the parabola \(y^2=8 x\) is of Length 16, then the angle subtended by it at the vertex of the parabola is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{\pi}{4}\)
Parabola

120093 If a normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex then \(t\) equals to

1 1
2 \(\sqrt{2}\)
3 2
4 \(\sqrt{3}\)
Parabola

120090 If the straight line \(y=m x+c\) is parallel to the axis of the parabola \(y^2=l x\) and intersects the parabola at \(\left(\frac{c^2}{8}, c\right)\), then the length of the latus rectum is

1 2
2 3
3 4
4 8
Parabola

120091 Let \(M\) be the foot of the perpendicular from a point \(P\) on the parabola \(y^2=8(x-3)\) onto its directrix and let \(S\) be the focus on the parabola. If \(\triangle \mathrm{SPM}\) is an equilateral triangle, then \(P\) is equal to

1 \((4 \sqrt{3}, 8)\)
2 \((8,4 \sqrt{3})\)
3 \((9,4 \sqrt{3})\)
4 \((4 \sqrt{3}, 9)\)
Parabola

120092 If the double ordinate of the parabola \(y^2=8 x\) is of Length 16, then the angle subtended by it at the vertex of the parabola is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{\pi}{4}\)
Parabola

120093 If a normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex then \(t\) equals to

1 1
2 \(\sqrt{2}\)
3 2
4 \(\sqrt{3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120090 If the straight line \(y=m x+c\) is parallel to the axis of the parabola \(y^2=l x\) and intersects the parabola at \(\left(\frac{c^2}{8}, c\right)\), then the length of the latus rectum is

1 2
2 3
3 4
4 8
Parabola

120091 Let \(M\) be the foot of the perpendicular from a point \(P\) on the parabola \(y^2=8(x-3)\) onto its directrix and let \(S\) be the focus on the parabola. If \(\triangle \mathrm{SPM}\) is an equilateral triangle, then \(P\) is equal to

1 \((4 \sqrt{3}, 8)\)
2 \((8,4 \sqrt{3})\)
3 \((9,4 \sqrt{3})\)
4 \((4 \sqrt{3}, 9)\)
Parabola

120092 If the double ordinate of the parabola \(y^2=8 x\) is of Length 16, then the angle subtended by it at the vertex of the parabola is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{\pi}{4}\)
Parabola

120093 If a normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex then \(t\) equals to

1 1
2 \(\sqrt{2}\)
3 2
4 \(\sqrt{3}\)
Parabola

120090 If the straight line \(y=m x+c\) is parallel to the axis of the parabola \(y^2=l x\) and intersects the parabola at \(\left(\frac{c^2}{8}, c\right)\), then the length of the latus rectum is

1 2
2 3
3 4
4 8
Parabola

120091 Let \(M\) be the foot of the perpendicular from a point \(P\) on the parabola \(y^2=8(x-3)\) onto its directrix and let \(S\) be the focus on the parabola. If \(\triangle \mathrm{SPM}\) is an equilateral triangle, then \(P\) is equal to

1 \((4 \sqrt{3}, 8)\)
2 \((8,4 \sqrt{3})\)
3 \((9,4 \sqrt{3})\)
4 \((4 \sqrt{3}, 9)\)
Parabola

120092 If the double ordinate of the parabola \(y^2=8 x\) is of Length 16, then the angle subtended by it at the vertex of the parabola is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{\pi}{4}\)
Parabola

120093 If a normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex then \(t\) equals to

1 1
2 \(\sqrt{2}\)
3 2
4 \(\sqrt{3}\)