Standard Equation of Parabola (parametric form)
Parabola

120086 The vertex and the focus of the parabola \(2 y^2+\) \(5 x-6 y+1=0\) are respectively

1 \(\left(\frac{7}{10}, \frac{3}{2}\right),\left(\frac{3}{40}, \frac{3}{2}\right)\)
2 \(\left(\frac{-7}{10}, \frac{3}{2}\right),\left(\frac{53}{40}, \frac{3}{2}\right)\)
3 \(\left(\frac{7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{7}{8}\right)\)
4 \(\left(\frac{-7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{17}{8}\right)\)
Parabola

120087 The parabola \(x^2=4\) ay makes an intercept of length \(\sqrt{40}\) unit on the line \(y=1+2 x\), then a value of \(a\) is

1 2
2 -2
3 -1
4 4
Parabola

120088 The co-ordinates of focus of the parabola \(5 x^2=\) \(-12 \mathrm{y}\) are

1 \(\left(\frac{3}{5}, 0\right)\)
2 \(\left(\frac{-3}{5}, 0\right)\)
3 \(\left(0, \frac{3}{5}\right)\)
4 \(\left(0, \frac{-3}{5}\right)\)
Parabola

120089 If a chord of the parabola \(y^2=4 x\) passes through its focus and makes an angle \(\theta\) with the \(\mathrm{X}\)-axis, then its length is

1 \(4 \cos ^2 \theta\)
2 \(4 \sin ^2 \theta\)
3 \(4 \operatorname{cosec}^2 \theta\)
4 \(4 \sec ^2 \theta\)
Parabola

120086 The vertex and the focus of the parabola \(2 y^2+\) \(5 x-6 y+1=0\) are respectively

1 \(\left(\frac{7}{10}, \frac{3}{2}\right),\left(\frac{3}{40}, \frac{3}{2}\right)\)
2 \(\left(\frac{-7}{10}, \frac{3}{2}\right),\left(\frac{53}{40}, \frac{3}{2}\right)\)
3 \(\left(\frac{7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{7}{8}\right)\)
4 \(\left(\frac{-7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{17}{8}\right)\)
Parabola

120087 The parabola \(x^2=4\) ay makes an intercept of length \(\sqrt{40}\) unit on the line \(y=1+2 x\), then a value of \(a\) is

1 2
2 -2
3 -1
4 4
Parabola

120088 The co-ordinates of focus of the parabola \(5 x^2=\) \(-12 \mathrm{y}\) are

1 \(\left(\frac{3}{5}, 0\right)\)
2 \(\left(\frac{-3}{5}, 0\right)\)
3 \(\left(0, \frac{3}{5}\right)\)
4 \(\left(0, \frac{-3}{5}\right)\)
Parabola

120089 If a chord of the parabola \(y^2=4 x\) passes through its focus and makes an angle \(\theta\) with the \(\mathrm{X}\)-axis, then its length is

1 \(4 \cos ^2 \theta\)
2 \(4 \sin ^2 \theta\)
3 \(4 \operatorname{cosec}^2 \theta\)
4 \(4 \sec ^2 \theta\)
Parabola

120086 The vertex and the focus of the parabola \(2 y^2+\) \(5 x-6 y+1=0\) are respectively

1 \(\left(\frac{7}{10}, \frac{3}{2}\right),\left(\frac{3}{40}, \frac{3}{2}\right)\)
2 \(\left(\frac{-7}{10}, \frac{3}{2}\right),\left(\frac{53}{40}, \frac{3}{2}\right)\)
3 \(\left(\frac{7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{7}{8}\right)\)
4 \(\left(\frac{-7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{17}{8}\right)\)
Parabola

120087 The parabola \(x^2=4\) ay makes an intercept of length \(\sqrt{40}\) unit on the line \(y=1+2 x\), then a value of \(a\) is

1 2
2 -2
3 -1
4 4
Parabola

120088 The co-ordinates of focus of the parabola \(5 x^2=\) \(-12 \mathrm{y}\) are

1 \(\left(\frac{3}{5}, 0\right)\)
2 \(\left(\frac{-3}{5}, 0\right)\)
3 \(\left(0, \frac{3}{5}\right)\)
4 \(\left(0, \frac{-3}{5}\right)\)
Parabola

120089 If a chord of the parabola \(y^2=4 x\) passes through its focus and makes an angle \(\theta\) with the \(\mathrm{X}\)-axis, then its length is

1 \(4 \cos ^2 \theta\)
2 \(4 \sin ^2 \theta\)
3 \(4 \operatorname{cosec}^2 \theta\)
4 \(4 \sec ^2 \theta\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120086 The vertex and the focus of the parabola \(2 y^2+\) \(5 x-6 y+1=0\) are respectively

1 \(\left(\frac{7}{10}, \frac{3}{2}\right),\left(\frac{3}{40}, \frac{3}{2}\right)\)
2 \(\left(\frac{-7}{10}, \frac{3}{2}\right),\left(\frac{53}{40}, \frac{3}{2}\right)\)
3 \(\left(\frac{7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{7}{8}\right)\)
4 \(\left(\frac{-7}{10}, \frac{-3}{2}\right),\left(\frac{7}{10}, \frac{17}{8}\right)\)
Parabola

120087 The parabola \(x^2=4\) ay makes an intercept of length \(\sqrt{40}\) unit on the line \(y=1+2 x\), then a value of \(a\) is

1 2
2 -2
3 -1
4 4
Parabola

120088 The co-ordinates of focus of the parabola \(5 x^2=\) \(-12 \mathrm{y}\) are

1 \(\left(\frac{3}{5}, 0\right)\)
2 \(\left(\frac{-3}{5}, 0\right)\)
3 \(\left(0, \frac{3}{5}\right)\)
4 \(\left(0, \frac{-3}{5}\right)\)
Parabola

120089 If a chord of the parabola \(y^2=4 x\) passes through its focus and makes an angle \(\theta\) with the \(\mathrm{X}\)-axis, then its length is

1 \(4 \cos ^2 \theta\)
2 \(4 \sin ^2 \theta\)
3 \(4 \operatorname{cosec}^2 \theta\)
4 \(4 \sec ^2 \theta\)