Tangent and Normal to Hyperbola
Hyperbola

120819 The difference of the focal distance of any point on the hyperbola is equal to its

1 latusrectum
2 eccentricity
3 length of the transverse axis
4 half the length of the transverse axis
Hyperbola

120824 If \(P Q\) is a double ordinate of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) such that OPQ is an equilateral triangle, \(O\) bing the centre of the hyperbola, then the eccentricity, \(e\) of the hyperbola satisfies.

1 \(1\lt \mathrm{e}\lt \frac{2}{\sqrt{3}}\)
2 \(\mathrm{e}=\frac{2}{\sqrt{3}}\)
3 \(\mathrm{e}=\frac{\sqrt{3}}{2}\)
4 e \(>\frac{2}{\sqrt{3}}\)
Hyperbola

120825 If the chords of the hyperbola \(x^2-y^2=a^2\) touch the parabola \(y^2=4 \mathrm{ax}\). Then, the locus of the middle points of these chords is

1 \(y^2=(x-a) x^3\)
2 \(y^2(x-a)=x^3\)
3 \(x^2(x-a)=x^3\)
4 None of these
Hyperbola

120819 The difference of the focal distance of any point on the hyperbola is equal to its

1 latusrectum
2 eccentricity
3 length of the transverse axis
4 half the length of the transverse axis
Hyperbola

120824 If \(P Q\) is a double ordinate of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) such that OPQ is an equilateral triangle, \(O\) bing the centre of the hyperbola, then the eccentricity, \(e\) of the hyperbola satisfies.

1 \(1\lt \mathrm{e}\lt \frac{2}{\sqrt{3}}\)
2 \(\mathrm{e}=\frac{2}{\sqrt{3}}\)
3 \(\mathrm{e}=\frac{\sqrt{3}}{2}\)
4 e \(>\frac{2}{\sqrt{3}}\)
Hyperbola

120825 If the chords of the hyperbola \(x^2-y^2=a^2\) touch the parabola \(y^2=4 \mathrm{ax}\). Then, the locus of the middle points of these chords is

1 \(y^2=(x-a) x^3\)
2 \(y^2(x-a)=x^3\)
3 \(x^2(x-a)=x^3\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120819 The difference of the focal distance of any point on the hyperbola is equal to its

1 latusrectum
2 eccentricity
3 length of the transverse axis
4 half the length of the transverse axis
Hyperbola

120824 If \(P Q\) is a double ordinate of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) such that OPQ is an equilateral triangle, \(O\) bing the centre of the hyperbola, then the eccentricity, \(e\) of the hyperbola satisfies.

1 \(1\lt \mathrm{e}\lt \frac{2}{\sqrt{3}}\)
2 \(\mathrm{e}=\frac{2}{\sqrt{3}}\)
3 \(\mathrm{e}=\frac{\sqrt{3}}{2}\)
4 e \(>\frac{2}{\sqrt{3}}\)
Hyperbola

120825 If the chords of the hyperbola \(x^2-y^2=a^2\) touch the parabola \(y^2=4 \mathrm{ax}\). Then, the locus of the middle points of these chords is

1 \(y^2=(x-a) x^3\)
2 \(y^2(x-a)=x^3\)
3 \(x^2(x-a)=x^3\)
4 None of these