Tangent and Normal to Hyperbola
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120820 The locus of the point of intersection on the line \(\sqrt{3 x}-y-4 \sqrt{3 k}=0\) and \(\sqrt{3} k x+k y-4 \sqrt{3}=0\) for different real values of \(k\) is a hyperbola \(H\). If \(e\) is the eccentricity of \(\mathrm{H}\) then \(4 \mathrm{e}^2=\)

1 48
2 39
3 13
4 16
Hyperbola

120821 Find the equation of tangent to the hyperbola \(4 x^2-y^2=64\), which is parallel to the line \(8 \mathrm{x}-6 \mathrm{y}+\mathbf{1 1}=\mathbf{0}\)

1 \(2 x+y=1\)
2 Tangent does not exists
3 \(3 x+y=1\)
4 \(x+3 y=1\)
Hyperbola

120823 The curve for which the length of the normal is equal to the length of the radius vector, are

1 only circles
2 only rectangular hyperbolas
3 either circles or rectangular hyperbolas
4 None of the above
Hyperbola

120822 The line \(x \cos \alpha+y \sin \alpha=p\) touches the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\), if:

1 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p^2\)
2 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p\)
3 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}^2 \mathrm{c}\)
4 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}\)
5 \(b^2 \cos ^2 \alpha-a^2 \sin ^2 \alpha=p^2\)
Hyperbola

120820 The locus of the point of intersection on the line \(\sqrt{3 x}-y-4 \sqrt{3 k}=0\) and \(\sqrt{3} k x+k y-4 \sqrt{3}=0\) for different real values of \(k\) is a hyperbola \(H\). If \(e\) is the eccentricity of \(\mathrm{H}\) then \(4 \mathrm{e}^2=\)

1 48
2 39
3 13
4 16
Hyperbola

120821 Find the equation of tangent to the hyperbola \(4 x^2-y^2=64\), which is parallel to the line \(8 \mathrm{x}-6 \mathrm{y}+\mathbf{1 1}=\mathbf{0}\)

1 \(2 x+y=1\)
2 Tangent does not exists
3 \(3 x+y=1\)
4 \(x+3 y=1\)
Hyperbola

120823 The curve for which the length of the normal is equal to the length of the radius vector, are

1 only circles
2 only rectangular hyperbolas
3 either circles or rectangular hyperbolas
4 None of the above
Hyperbola

120822 The line \(x \cos \alpha+y \sin \alpha=p\) touches the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\), if:

1 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p^2\)
2 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p\)
3 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}^2 \mathrm{c}\)
4 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}\)
5 \(b^2 \cos ^2 \alpha-a^2 \sin ^2 \alpha=p^2\)
Hyperbola

120820 The locus of the point of intersection on the line \(\sqrt{3 x}-y-4 \sqrt{3 k}=0\) and \(\sqrt{3} k x+k y-4 \sqrt{3}=0\) for different real values of \(k\) is a hyperbola \(H\). If \(e\) is the eccentricity of \(\mathrm{H}\) then \(4 \mathrm{e}^2=\)

1 48
2 39
3 13
4 16
Hyperbola

120821 Find the equation of tangent to the hyperbola \(4 x^2-y^2=64\), which is parallel to the line \(8 \mathrm{x}-6 \mathrm{y}+\mathbf{1 1}=\mathbf{0}\)

1 \(2 x+y=1\)
2 Tangent does not exists
3 \(3 x+y=1\)
4 \(x+3 y=1\)
Hyperbola

120823 The curve for which the length of the normal is equal to the length of the radius vector, are

1 only circles
2 only rectangular hyperbolas
3 either circles or rectangular hyperbolas
4 None of the above
Hyperbola

120822 The line \(x \cos \alpha+y \sin \alpha=p\) touches the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\), if:

1 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p^2\)
2 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p\)
3 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}^2 \mathrm{c}\)
4 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}\)
5 \(b^2 \cos ^2 \alpha-a^2 \sin ^2 \alpha=p^2\)
Hyperbola

120820 The locus of the point of intersection on the line \(\sqrt{3 x}-y-4 \sqrt{3 k}=0\) and \(\sqrt{3} k x+k y-4 \sqrt{3}=0\) for different real values of \(k\) is a hyperbola \(H\). If \(e\) is the eccentricity of \(\mathrm{H}\) then \(4 \mathrm{e}^2=\)

1 48
2 39
3 13
4 16
Hyperbola

120821 Find the equation of tangent to the hyperbola \(4 x^2-y^2=64\), which is parallel to the line \(8 \mathrm{x}-6 \mathrm{y}+\mathbf{1 1}=\mathbf{0}\)

1 \(2 x+y=1\)
2 Tangent does not exists
3 \(3 x+y=1\)
4 \(x+3 y=1\)
Hyperbola

120823 The curve for which the length of the normal is equal to the length of the radius vector, are

1 only circles
2 only rectangular hyperbolas
3 either circles or rectangular hyperbolas
4 None of the above
Hyperbola

120822 The line \(x \cos \alpha+y \sin \alpha=p\) touches the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\), if:

1 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p^2\)
2 \(a^2 \cos ^2 \alpha-b^2 \sin ^2 \alpha=p\)
3 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}^2 \mathrm{c}\)
4 \(\mathrm{a}^2 \cos ^2 \alpha+\mathrm{b}^2 \sin ^2 \alpha=\mathrm{p}\)
5 \(b^2 \cos ^2 \alpha-a^2 \sin ^2 \alpha=p^2\)